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Direct representation of the free surface in ocean circulation models leads to a
number of computational difficulties that are due to the fast time scales associated
with free-surface waves. These fast time scales generally result in severe time-step
restrictions when the free surface is advanced using an explicit scheme and may
result in large phase errors when the free surface is treated implicitly with a large
time step. A multiple-scale analysis of the shallow-water equations is used to an-
alyze this stiffness and to guide the construction of a computational methodology
that overcomes the associated difficulties. Specifically, we explore a class of frac-
tional step methods that utilize coarsened grids in the propagation of long-wave
data. The behavior of the corresponding schemes is examined in detail in light
of one-dimensional model problems, based on finite-difference or spectral-element
discretizations. (© 2001 Academic Press
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1. INTRODUCTION

The ocean is subject to numerous forcing agents (e.g., tides, wind stress, solar re
tion) with widely varying spatial (a few meters to thousand of kilometers) and tempot
scales (minutes to decades). The ocean’s response to these forcing mechanisms ex
similarly broad spatial and temporal spectra. The fastest such response relevant to phy
oceanographic processes are gravity waves that travel on the surface of the ocean at s
exceeding 200 m/s in deep waters. Gravity waves carry energy and momentum ac
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large distances with little damping and thus allow a localized disturbance to propagate
influence over a large region.

The evolution of free-surface waves in ocean simulations leads to a number of com
tational difficulties. One of these difficulties concerns the nonlinear evolution of the fr
surface whose location is unknown a priori and must be computed as part of the s
tion. Another—more pronounced—example is the great disparity between the gravity w
speed and the characteristic advection velocity, which typically does not exceed 1-2
This disparity is usually expressed by the fact that the Froude number, defined as the
of advection velocity to gravity wave speed, is very small. As a consequence, free-surf
models using explicit integration schemes (which are generally subject to a CFL tin
step limit based on the highest wave speed) are restricted to time steps several orde
magnitude smaller than the time scale of phenomena of interest. As a result, extended |
resolution ocean simulations, such as those needed to model the mesoscale circulatio
expensive.

Ocean models have traditionally relied on the rigid-lid assumption [1, 2] to circumve
the computational difficulties of low-Froude-number free-surface flow. Fast gravity wav
are thus suppressed and longer time steps can be used. This benefit comes at the ¢
compensating for the rigid-lid assumption, either by computing a sea-surface pressure
the depth-integrated equations [3] or by solving a vorticity—streamfunction equation for
depth-averaged flow [1, 2].

Several difficulties hinder the usefulness of the streamfunction—vorticity formulatio
One is the need to specify vorticity boundary conditions. Another difficulty arises for mt
tiply connected domains, where additional integral conditions must be derived in orde
determine streamfunction values around islands. The island conditions in particular c
plicate the solution process and inhibit parallelization of the model [3]. The sea-surfz
pressure formulation avoids the computational disadvantages of the streamfunction for
lation. However, it too requires derived boundary conditions for the surface pressure.
biggest limitation of both approaches is that they treat the surface variable, the stre
function in the streamfunction—vorticity formulation and sea-surface pressure in the la
formulation, as a diagnostic variable which inhibits the assimilation of satellite altimet
data in rigid-lid ocean models [4].

From a physical point of view, an evolution equation for the sea-surface displacem
is highly desirable. First, it significantly simplifies the process of assimilating satelli
altimetry data in ocean models. Such assimilation has proven to be extremely valuabl
improving the models’ performance since they integrate in the model a continuous, glol
and spatially dense data set. Second, it allows the simulation of high-frequency dynan
such as tides, that would otherwise be excluded under the rigid-lid assumption. Th
high-frequency dynamics can play an important role in transferring energy between
external and interior modes of the ocean, in the evolution of internal tides, in enhancing
dissipation of energy via enhanced bottom drag, and so forth.

To avoid otherwise prohibitive computation costs, it is imperative in free-surface mod
to separate the integration of the gravity waves, also referred to as fast modes, from
remaining dynamics. To this end, the three-dimensional governing equations are integr
vertically. The resulting depth-averaged equations, referred to as the shallow-water e
tions or the barotropic equations, contain the fast modes (e.g., [5, 6]). The shallow-w:
equations are coupled to the original set of equations through the nonlinear advection te
which link the slow and fast modes.
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One approach to integrating the two- and three-dimensional equations is the so-ce
split-explicit method: the depth-mean equations are subtracted from the original thr
dimensional equations to obtain the baroclinic equations which govern the three-dimensi
evolution of the slow modes. The two-dimensional equations are advanced explicitly in til
using a small time step dictated by the fast modes, while the three-dimensional equat
are advanced with a larger time step (e.g., [7]). This asynchronous integration complic:
the coupling of the fast and slow modes and must be filtered temporally in order to suppit
a weak instability [8].

Synchronous large-time-step integration of the equations can be performed if a se
implicit scheme is adopted for the two-dimensional equations (e.g., [9, 10]). The sel
implicit formulation generates a set of simultaneous equations which must be sol\
efficiently in order to keep the overall cost of the simulation at a reasonable level. The g
metric complexity of ocean basins precludes the application of specialized direct solve
such as fast Fourier methods. Thus, direct solvers are restricted to matrix-based techni
which are cost-effective when the size of the problem is small. However, when the size of
problem increases, the performance of direct matrix-based solvers deteriorates, prim:
because of excessive memory requirements and to some extent poor scalability prope
Thus, for large problems, the application of iterative solvers is a more viable approa
Their effectiveness hinges on keeping the number and cost of iterations small.

Unfortunately, a large-time-step implicit treatment of the fast modes generally leads
undesirable side effects, including excessive damping and/or aliasing of the waves. T
irrespective of the solution approach and iteration cost, straightforward application of se
implicit schemes may not necessarily yield a significant improvement over split-expli
schemes.

Our objective herein is to improve the treatment of fast surface gravity waves in oce
models. The new algorithms proposed target the models’ ability to integrate the fast gra
modes accurately and efficiently during long-term simulations. We focus our attenti
exclusively on the solution of the shallow-water equations, which are the equations sol
during the fast wave update. Our new approach is inspired by Klein’s recent multiple-sc
analysis of the weakly compressible Euler equations [11]. This analysis has led to a multij
pressure-variable (MPV) low-Mach-number simulation scheme with features analogou:
those desired.

The present article is organized as follows. In Section 2, we exploit the similarities &
tween the shallow-water equations and the equations of gas dynamics, where the N
number is the analogue of the Froude number, to adapt the results and methodolog
[11] to the shallow-water equations. Based on the multiple-scale methodology, we outl
in Section 3 the splitting of the shallow-water equations into three subsystems which
integrated via a fractional step approach. The splitting is based on (a) performing a fr
tional step update of advection and external forcing, (b) defining/extracting long-wave d
using a filtering procedure, (c) propagating long-wave data using an explicit scheme ¢
coarsened grid, (d) interpolating the preliminary long-wave update onto the fine grid, ¢
(e) finally performing an implicit short-wave update. We have implemented our schel
using two different spatial discretization schemes in order to demonstrate the generalit
our approach. The first implementation relies on finite differences and is used in Sectic
to test various aspects of the algorithm, including the splitting, filtering, and interpolatic
procedures. Spectral-element discretization [12] is then introduced in Section 5, and
computations are extended to variable bathymetry and fixed wall conditions. We rest
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our attention to the splitting formulation and 1D tests; multidimensional implementatic
and numerical tests that include fastd slow modes will be discussed elsewhere [13].
Major conclusions are summarized in Section 6.

2. ASYMPTOTIC ANALYSIS OF THE SHALLOW-WATER EQUATIONS

2.1. Governing Equations

As mentioned in the Introduction, we focus on a reduced ocean circulation model the
based on the 2D shallow-water equations

f’a—‘tfw.emgezzb (1a)
o . .
sV lh+oul=0, (1b)

whereU is the depth averaged velocity,is the gravitational acceleration,is the free-
surface displacemeriy,is the rest depth, andis a general forcing term, which include,
among other things, wind stresses, Coriolis force, and dissipation. Tildes are used to de
dimensional quantities. Equation (1) must be supplemented with adequate boundary
initial conditions, which will be discussed later.

The above system of equations is obtained by depth-averaging the three-dimensi
equations of motion, which should generally be used in modeling slow internal motio
The “reduced” system (1), however, is suitable for the present study, which focuses on
treatment of fast free-surface waves.

2.2. Relevant Scales and Normalization

In order to facilitate the analysis, the governing equations are first normalized. For oc
circulation problems of interest to the present work, the horizontal lengthisgals on the
order of 1000 km, the vertical length scade.sis on the order of 1 km, and the characteristic
advection velocityj refiS on the order of 1 m/s or smaller. Using the characteristic advectic
velocity and horizontal length scale, one can form a characteristic time Jeale I:ref/

U . With the present choices of characteristic length, time, and velocity scales, the g
erning equations are normalized as

au 1

§+U-Vu+zvg=b (2a)
IS

E‘FV‘[(h‘FC)U]:O, (2b)

whereu = U/Uer, t = £/ Tyer, h=h/Hyer, ¢ = 7 /Hier, b= bLier/U%;, andV = LefV.
Note that the normalization procedure leads to the definition of a dimensionless parami
= Ufef/(gﬁref). Thee is in fact the Froude number, and the inequalitg 1 expresses
the fact that the characteristic advection velocity is much smaller than the speed of fi
surface gravity waves; in deep water, for example, the Froude number is akdl™.
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2.3. Expansions and Analysis

The above normalization suggests the following multiple-scale asymptotic expansion
surface elevation and velocity,

(G E D =0 E D +ecP X E 1) + X0 P(XE D)+ ©)
U, £,t) = U, &, t) + eu®(x, &, 1) + 2U@(x, £, ) + - - -, (4)

where we have introduced the stretched spatial variable
& =ex. (5)

We shall treak and¢ as independent variables. As will be evident later, the variglide
most helpful in the description of long waves. Note that the resting deindependent
of time and ofe; however,h may vary on the long-wavé-scale and may also exhibit
small-scalex variations.

The normalization and multiple-scale expansions introduced above enable us to im
diately adapt well-known results for zero- and low-Mach-number flow [11, 14-17]. |
particular, following an approach similar to that in [11], it may be shown that:

1. The multiple-scale expansion introduced above leads to the following decomposit
of the gradient operator,

V = Vi + Ve, (6)

and to a hierarchy of perturbation equations. Of particular interest to the present discus
are the leading, first- and second-momentum equations, respectively,

Vxé-(o) =0 (7)
Vig W+ Vg =0 (8)

e o © @ _ O @
T_‘_u - VU™ + Vg =D _v§§ , (9)

and the leading and first mass conservation equations, respectively,

3§(0)

P (10)

Ve [(h+¢@)uO] = —

a;-(l)
at

+ V- [(N+ QP + ¢ PuO) + v, - [(h+ ¢ @)u@] = 0. (11)

2. From Eq. (7), it follows immediately that the leading-order surface deformation
independent ok. By considering the volume average of Eq. (8), assumingatiahas at
most sublinear growth [11], and combining with the result just stated, we concludg®hat
is independent df as well and is consequently a function of time only. It also follows that thi
first-order surface displacement doegadmit small-scale variations, i.¢ (Y = ¢ (g, t).

3. AsshowninEg. (10), temporal variations of the leading-order surface elevation impe
a divergence constraint on the flow field. The significance of this constraint becomes m
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obvious after we integrate this relationship over the area of the basin and apply the diverg
theorem to obtain
ac© 1

= A, (h+¢?)u® . ndo, (12)

whereA is the area of the basid, its perimetern the local outer normal, ardb a length
element. Thus; © changes due to net mass into the basin.

4. When the area of the basihis large, as is obviously the case in most ocean applice
tions, the system supports nontrivial wave motion, and we may assumg&theanishes
identically. In this case, net mass into the basin is instead reflected through mean cha
of ¢, Thus, global changes in the depth, if relevant, are “felt” by the cumulative effect
gravity waves; see related discussion in [11] and additional remarks in item (5) below.

5. To analyze the dynamics of the system further, we introduce a spatial averag
operator which filters out small-scale fluctuations. We shall use the overbar to denote
filtering operator whose action shall be specified later. Taking the average of Eq. (11),
noting thatt @ = ¢ we get

3@-(1)
ot

+V: - [(h+¢@)u®] = 0. (13)

The spatial average of the divergence term can be estimated from (9), which we rewrit
the conservation form

0)) {0
w + V- [(h+29)u@u®] + (h+ @) v, @
= (h+2@)b® — (h+ @) Ve ® (14)

after using Eq. (10); the term©@u© denotes a dyadic product. The second term on th
left-hand side of the above equation drops out upon spatial averaging:

9(h+¢O)uo

o +(h+¢@)Vee® = (h+¢@)b® — (h+¢@)Ver®. (15)

Equations (15) and (13) can be combined to yield

82C(1)

= [0Vt @] = V; - ("Wt @) — v - hb©® (16)

after settingz @ = 0 (per point 4). Thus, the large-scalé® component of the surface
displacement obeys the linear inhomogeneous wave equation, with variable wave s
c(&) = v/h(&). Note that the correlationVv, ¢ @ vanishes whenevérvaries on the -scale
only.

6. The discussion above indicates that long-wave “data” are responsible for fast we
with propagation speeds that are O(1) ong§bkscale. To further appreciate this result, we
revert to standard notation by replaci¥igwith e "1V (see Eq. (6)), and thus convert Eq. (16)
into

920 heow] 1o o 1 -
2 .| — — V. 2) _ —v.hp©
o2 \Y szg } c \Y (hV{ ) c V - hb'™. a7
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Thus, in the usual coordinate frare), wave propagation speeds ar&0'). Note that by
virtue of our normalization conventions the particle motion has characteristic speeds
are O(1) on thex scale. As noted earlier, the disparity between the characteristic speec
advective motion and the characteristic wave propagation speeds underscores one ¢
well-known difficulties in modeling low-Froude-number flows.

3. SPLITTING OF THE SHALLOW-WATER EQUATIONS

3.1. Preliminaries

The multiple-scale analysis conducted above suggests that a good starting point
addressing the difficulties of the low-Froude-number problem is to (a) isolate fast-movi
gravity waves from the remaining phenomena, and (b) absorb the difficulties associe
with the fast waves by first performing a long-wave integration based on suitably averas
data and then accounting for small-scale dynamics. An attractive approach which refls
these ideas is to perform a splitting of the equations of motion into slow and fast dynam

We begin our presentation by rewriting the equations in time-integrated form,

tht1
U(thy1) = uty) + / [b—u-Vu—e2ve]dt (18)
tn
the1
Eltyn) = £lt) — / V- [(h+ou]dt, (19)
tn

where we assume that the initial conditions at titmare known. The above time integral
can be split into two systems, one corresponding to the slow dynamics,

thi1

Ui = u(tn)+/ [b—u-Vu]dt (20)
tn
T

G =ty — / V. uydt, (21)
tn

and another corresponding to the fast dynamics,

tn+1
U(the1) = U; —/ e?ve dt (22)
tn
thia
{(tned) = & — / V- (hudt, (23)
th

whereu; and¢; denote intermediate values. Note that the fast system corresponds to sol
the linear differential equations

au

_2 _
o1 +€e°VvVe =0 (24)

iy _

E+V~(hu)_0 (25)

with the initial conditions pairi, ¢;).
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Guided by the asymptotic analysis, we extract the long-wave data using the large-s
averaging operator [11, 14]

f(x) = / f OW(X) d.A, (26)
D(x;L)

whereW denotes a “radial” weight function of compact support, &hé the support of
W. The notatiorD(x; L) is used to indicate that the support\fis centered at and has
characteristic sizé . The choice oW andL will be discussed further below.

The averaging operator isolates the long- and short-gravity-wave dynamics into sepa
systems:

ou -2

— Vi=0 27
eIV @)
0

—+V-hu=0. 28
S+ VU (28)

Note thatthe above (“linearized”) system accounts for fast-wave propagation. By integrat
it in an implicit fashion, or by using an explicit solver ortaarsecomputational grid, it is
possible to avoid the stiff CFL conditions which limit the application of conventional solver
As will be discussed later, the coarse-grid approach is preferred as it also avoids alia
or excessive damping of the long waves. The asymptotic analysis leads us to asso
the averaged pressutewith e @; the short-wave perturbations can then be defined
62§(2) = — 6;(1)_

The equations governing the short-wave propagation can be obtained simply by subti
ing system (27)—(28) from system (24)—(25),

a(u—u)

o +eV(E-¢)=0 29)
3(43—;;) +V-[(hu—hw] =0, (50
or equivalently,

ou ou

au @_ %
ot TV T .

L3 W

ot + V. (hu) = —¢ ot (32)

For the numerical scheme to survive the zero Froude number §mit,0, the pressure
term in the momentum equation should be treated implicitly, or at least in a semi-impli
fashion. Choosing the former approach, we rewrite the above system in the semi-disc
form,

MUt +ve@ = p (33)
25{(2)

5t + V- (hu"?1) =€Q, (34)

where M is a time-discretization matrix, anll and Q denote the right-hand-side terms
in Egs. (31) and (32) after time discretization, respectively. Combining Eqgs. (33) and (:
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results in the following “pressure” equation:

6{(2)
ot

Note that in the limite — 0, the above equation reduces to an elliptic equation for th
second-order pressur& , which coincides with the familiar “projection” step encountered
in the rigid-lid formulation.

Also note that, without the multiple pressure approach which explicitly separat¢s O
(long gravity wave) and Q€) (advection) contributions, the analogue of Eq. (35) woulc
read

€? — V- [hM V@] = -V . [hM71P] 4+ €Q. (35)

b
628% _ V. [WM1Ve] = —€2V - [hM-P]. (36)
In the limit ¢ — 0, Eq. (36) reduces to a homogeneous elliptic equatioq, iwith no
dependence on the velocity field. Obviously, this the correct low-Froude-number
limit. It follows from the above discussion that the definition of multiple pressure field:
appropriately scaled by different powersefis a key ingredient for the present shallow

water scheme to survive in the low-Froude-number limit.

3.2. Numerical Implementation

Following the discussion above, we explore a splitting method for integration of t
shallow-water equations. The splitting is based on using afiltering operator to decompose
numerical solution into small- and large-scale components, which are advanced separ:
on a fine and a coarse grid, respectively. Accordingly, the numerical scheme incorpor:
the fractional steps summarized below. To emphasize the general nature of the apprc
we revert to the originallimensional form of the equations, but to simplify the notation
we will drop the tildes from dimensional symbols.

S1 Advection and External Forcing

In the first step, we account for advection processes and external forcing on the sys
by integrating the system

W _—_U.VvU+b

System I: { (37)

3 ==V @V

with the initial conditions pair Jn, ¢); here subscriph refers to the time level at the
beginning of the integration step. An explicit scheme during this step does not cause c
putational difficulties, since the characteristic advection velocity is O(1).U;etnd ¢;
denote the resulting velocity and elevation at the end of S1.

S2 Decomposition of the Intermediate Solution

Guided by the asymptotic analysis, we rely on spatial filtering to decompased U;
into large-scale and small-scale components. We use

d=a, ¢$=6-4 (38)
U=U, UW=U-U, (39)
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where the superscriptands refer to the large- and small-scale components, respectivel
while the overbar refers to the averaging operator introduced in the previous section.

S3 Long-Wave Integration

The long-wave componentsandU! are used as initial values for the second intermediat
step, which performs a long-wave update. The latter is obtained by integrating

Wy gvel =0
SystemIl: ¢ ° (40)
% =—v.[hU'l.

Note that since (40) accounts for fast-wave propagation, it has to be integrated in animp
fashion or by using an explicit solver on a coarse computational grid. While both approac
enable us to overcome the stiff CFL restriction associated with fast waves, the latter appre
is preferred because it naturally avoids aliasing and/or excessive damping. Nonetheless,
methods will be tested and compared. Weukg\tandgl'D denote the fields resulting from the
above fractional step. When a coarse grid is used in the integration of (40), the large-s
field must be “interpolated” onto the fine grid for the solution to proceed. In this cas
U'p and{L refer to the fields after the interpolation is performed. Details on interpolatic
procedures will be discussed later.

We have implicitly assumed that the degthvaries on the large scale only, so that
(hU)! = hU'. If h has small-scale variations, an additional term must be inserted to acco
for the generation of long waves from the interaction of small-scale waves with the sm:
scale topography, i.e., the tetmvy¢ @ in Eq. (16).

S4. Small-Scale Integration

The integration cycle is completed by integrating the small-scale pressure variations

W 4+ gves=0
System I . (412)
¥+ V- (hU%) =0

with U} and¢® as initial data, and settind, ;1 = U'p + U} andgnig = ;L + ¢5- Note that
in the limite — 0, System Il is no longer needed while System Il reduces to the famili
rigid-lid formulation. Since in this limit the speed of pressure waves diverges‘aghe
above system is integrated in an implicit fashion. Also note that while System Il has a fo
very close to that of System II, the latter treats long-wave data with pressure amplitu
scaling as &), while the former describes small-scale dynamics with pressure amplituc

scaling as Q).

Summary
We summarize the splitting algorithm steps as follows:

1. Integrate (37) explicitly usindJn, ¢n) as initial conditions. Label the resulting fields
(Ui, &). _

2. Extract the long and short wavedd!, ¢ = (Ui, &), and (US, &%) = (U; — UL,
gi — Cil)-
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3. Integrate system (40) usingj( &) as initial data and call the resulting fields,, z}).
4. Integrate system (41) usingy, ¢°) asinitial data and call the resulting fieldsy; ¢7).
5. Set Uns1. tnp1) = (U + U3, ¢ + ¢3), and go to step 1.

3.3. Remarks

1. It should be emphasized that in the approach described above, one is actually sol
thefull equations of motion andot a system of asymptotic conservation laws. The var.
ious splitting, filtering, and interpolation procedures are simply designed to help achie
a numerical shallow-water model which (a) would allow synchronous integration of tl
2D and 3D equations, (b) would allow large time steps by overcoming the surface C
condition, (c) does not damp or alias long waves, (d) accommodates large variation in
rest depth, and (e) would extend naturally from zero to moderate Froude numbers. In |
ticular, the propagation of long-wave data on a coarsened grid (step S3) may be viewed
“preconditioning” step and should not be identified with an approximate evolution equatic

2. As mentioned in the Introduction, an approach analogous to that described above
been used in the context of low-Mach-number finite-difference computations [11, 14, 1
Based on these experiences, one would anticipate that the success of the present mu
scale ocean modeling approach would crucially depend on the performance and cost o
averaging and interpolation operators, which are used to isolate different components o
solution and in transferring data between grids of different resolution. Below, we focus
these issues for finite-difference and spectral-element discretizations.

3. Another key aspect in the present approach is the implicit or semi-implicit presst
solution in the correction step, S4. Obviously, this small-scale pressure update must
require excessive overhead, so that the advantages of the time splitting can be mainta
The selection and implementation of adequate solvers will be addressed in a follow
article [13], in the context of multidimensional computations.

4. FINITE-DIFFERENCE COMPUTATIONS

In this section, we examine the performance of the splitting scheme of the previc
section in a simplified one-dimensional setting. As discussed in Section 4.1, a test prob
which consists purely of advection and gravity waves is considered. The problem is
in a 1D periodic domain of constant depth. This simplified setting is also used to analy
the role of the filtering operator that is used to extract the long-wave data. In particul
results obtained with various filter functions are contrasted to each other and to res
of spectral-Fourier filtering and interpolation. Furthermore, we exploit the present setti
to explore two approaches to long-wave integration. In the first approach, long waves
advanced using an implicit scheme on the fine grid; in the second, long waves are tre
explicitly on a coarse grid. These approaches are referred to as single-grid method (S
and double-grid method (DGM) and are discussed in Sections 4.2 and 4.3, respectivel

4.1. Model Problem

In order to isolate gravity waves and advection, we focus on a shallow-water system v
no external forcing. This is simply achieved by setting 0 in the governing equations. Us-
ing the reduced system, we consider a one-dimensional basin of lergth,es = 3600 km,
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and uniform rest deptin, = H,es = 1 km. Periodic boundary conditions on the velocity anc
elevation are imposed, using

UX=0,t) =UX =L t), ¢(X=0,t) = (X = L, t), Vt. (42)
Unless otherwise noted, the initial conditions are given by
Ux,t=0 =0 (43)

and

0.005 (“44)

2
(L)r(ef B %) ]
9

(X, t=0) = ¢o(x) = anp[—

i.e., the velocity initially vanishes while the surface elevation corresponds to a Gauss
bump centered at the middle of the basin, and with amplituge0.5 m.

The linear solution to the above problem consists of left- and right-going waves travell
at the speed = ./gh ~ 100 m/s. The linear solution is given by

1
£, 1) = Slto(x —ct) + Go(x + v (45)
WX, B) = S [golX — €)= Lo(x +cO]. (46)
Thus, the Froude number can be estimategas® = a/h ~ 5 x 1074,

4.2. Single-Grid Method
4.2.1. Discretization

In the SGM, the spatial discretization of the governing equations is performed on a ¢
gle, staggered, finite-difference grid with mesh sixe. The grid points are uniformly
distributed over the interval [A,ef]. The grid sizeAx = Lt/ N¢, whereN; is the total
number of grid points. The velocity field is discretized at the node points while the elevati
is discretized at cell centers. We adopt the standard notatien(i — 1) AX, Xiy12 = (Xi +
Xit1)/2, Ui = U(X), & = {(Xi+1/2), andi = 1,..., N¢. Derivative operators are approx-
imated using centered differences, according to

aU Uis1 — Ui_
0= (47)
aU¢) (x- ) B CIHT_;IUi-rl _ & +2§"1Ui
9% i+1/2) = Ax

As outlined in the previous sections, different integration schemes are used in the fi
tional step approach. Inthe present SGM implementation, we rely on the third-order Adar
Bashforth (AB3) scheme to integrate System | and on the Crank—Nicolson (CN) schem
update Systems Il and 111
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FIG. 1. Comparison of computed solutions after 1 day using the SGM and fully explicit schemes. The SC
computations are performed witht = 1 min, while the explicit scheme useg =5 s, Ax = 10 km in both
cases.

4.2.2. Results

The evolution of the system is computed for a period of 1 day, using a gridNvith
360 grid points and a mesh sizex = 10 km. In all cases discussed in the present sectior
the averaging procedure relies on a top-hat filter,

X| < La

1
Wh(x) = {2“ | (48)

0 |X|>Ly

wherel , is the averaging length. For the tests below, weluse- 1000 km.

Figure 1 shows the elevation after 1 day, computed using a timeAdtep1 min. The
corresponding advective CFL number is GRE 102, while the CFL based on the gravity
wave speed is CRL= 0.6. The SGM solution is contrasted with results based on a full:
explicitintegration of th@riginal system of equations, using an AB3 scheme with=5s.
The agreement between the two solutions is quite evident.

Next, we examine the effect of the time step on the SGM predictions. To this end, solutic
are obtained witt\t = 2, 5, and 10 min, and curves for the free-surface elevation at the el
of 1 day are plotted in Fig. 2. The results show thatAdr> 5 min the SGM predictions
are significantly influenced by the value of the time step. Rapid amplification of phase err
is observed as the time step increases.

0.5 T T T

04 | 1 minute solution at t = 24 hours b
2 minutes -------

03 5 minutes -------- e

10 m]nutes ................

E
=S 0.2
S
g 0.1
w o B TS el e
P 1
_0‘2 1 1 I
0 1000 2000 3000

FIG. 2. Effect of At on SGM predictions. Plotted are free-surface elevations computedAaitls 10 km,
andAt =1, 2,5, and 10 min.
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0.6 after 2 weeks ------- |
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after 4 weeks -

Elevation (m)

FIG. 3. Free-surface elevation at selected times. The SGM solution is obtainedAwita10 km and

At =5 min.

To further verify this claim, we plotin Fig. 3 the free-surface elevation at 1-week interva

the solution being computed witht = 5 min. The plot shows oscillations moving at dif-

ferent speeds, an indication of dispersive phase errors. Additional evidence regarding t
phase errors can be found in Fig. 4, which shows the evolution of initially monochroma
free-surface waves. Figure 4 clearly shows that spurious frequencies are not generate
addition, individual modes maintain their amplitudes, indicating that wave damping dc

not occur.

The present tests show that the split scheme introduced in the previous section is in
well suited to shallow-water computations at low Froude number. However, the impli
treatment of long waves, though (neutrally) stable, may lead to large phase errors. Tl

errors become excessively large as soon as the wave-CFL numbgy, ©&leeds unity.

Elevation (m)

time step : 5 minutes

Elevation (m)

FIG. 4. Free-surface elevation plotted at one-quarter-week intervals, for two different monochromatic wa

The SGM solution are obtained withx = 10 km andAt = 5 min.
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Consequently, the present approach does not appear to constitute a suitable mear
constructing a large time-step scheme. This motivates us to consider the fine-/coarse
approach below as a possible alternative.

4.3. Double-Grid Method

As mentioned earlier, the DGM aims at defeating the wave-CFL restriction by using,
S3, a coarse grid in order to propagate the long-wave data. The remaining pieces of
algorithm in S1 and S4 are performed using the same spatial discretization as in the S
and on a similar grid, which is now referred to as the fine grid. Thus, we shall only descri
the data transfer procedure in S2 and the long-wave propagation in S3.

4.3.1. Definition of Coarse Grid

In the finite-difference computations, the coarse grid is defined so that averaging
interpolation procedures can be easily implemented. This is achieved using a construc
which ensures that all the nodes of the coarse grid coincide with fine-grid nodes at
corresponding spatial locations. To this end, the coarse-gridsiXejs defined using

AX = n, AX, (49)

whereAx is the fine mesh size. The tenm is assumed to be an odd positive integer anc
is referred to as grid ratio. Thus, the number of grid points in the coarseNyjds given
by N. = N¢/n,. The coarse-grid locations are related to the fine-grid positions using

Xi = Xi, j=@G(-Dn +1
i j J (- )N (50)
Xiy12 =%, k=(@1-1/2)n +1,
i =1,..., Nc. As discussed below, this definition simplifies the data transfer operatiol

outlined below.

The choice of grid ratio is primarily dictated by the length scales of the slow and fa
waves. If the latter are much longer than the former, the grid ratio should scale as the inv
of the Froude number; otherwise, the length scale of the fast waves imposes an upper |
Thus we can writeA X = min(I /M, Ax/e), wherel is the characteristic length of the fast
waves, and M is the minimum number of grid cells needed to resolve it. In the exam,
problem, it is the length scale of the fast wave that dictate the coarse-grid spacing, i.e.,
width of the Gaussian bump which is 200 km.

4.3.2. Filtering and Interpolation

Data transfer between the fine and coarse grids is based on (a) interpolating the cc
grid data onto the fine grid, and (b) filtering fine-grid data to define smooth fields that
well represented on the coarse grid. Obviously, these steps should be carefully perfor
to avoid generating potentially harmful computational modes.

For the purpose of interpolating coarse-grid data the finite-difference computations r
exclusively on a Fourier interpolation procedure. The latter is based on representing
coarse data using Fourier modes and directly evaluating the Fourier representation or
fine-grid values. This ensures that (a) the interpolated field agrees with the original fielc
the coarse-grid locations, and (b) high-wavenumber modes are not spuriously gener:
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While Fourier interpolation may not be immediately extended to more general situation:
enables usto focus on other aspects of the numerical construction. Alternatives are disct
in the following section, in the context of a spectral-element discretization.

Two procedures for extracting coarse-grid data from the corresponding fine fields
considered. The first is based on applying a filter function, as indicated in Eq. (26).
addition to the box filter defined in Eq. (48), we consider the second-order Gaussian fil

Wy (X) = ! ex X (51)
9w Sro P o2

and an additional filteiVy, that is designed to provide a more direct control on the spectru

of the large-scale componeity is defined as the inverse Fourier transform of the transfe

function,

Mg ={ k=l (52)
el (7)) ke

wherek; is the cutoff wavenumben is the order of the Gaussian tail, anglis its width.
H andWj are plotted in Fig. 5 fon = 2 and different values d&; andn..

In order to analyze the effects of filter size and shape, a second filtering approach th
based on a sharp spectral cutoff is used. This is simply implemented by taking the Fol
transform of the fine-grid data, truncating the spectrum at a cutoff wavenulaerd then
inverting the truncated spectrum onto the coarse-grid positions.

4.3.3. Long-Wave Propagation

We start the analysis of the DGM by comparing solutions obtained with an explicit a
an implicit scheme in step S3. The third-order Runge—Kutta scheme (RK3) and the Cra
Nicolson scheme are used. The scheme is applied to the model problem summarize
Section 4.1. Computations are first performed using the filter fundliprwith a cutoff
wavenumbek, = 15. The grids are set up so that the fine-mesh aixe= 10 km and
the coarse-grid siz& X = 30 km, i.e., the grid ratim, = 3. As shown in Fig. 6a for the
present choice &, the filtered and original signals coincide and the short-scale compone
vanishes. Also, for the present discretization, the large-scale component is well represe
on the coarse grid, with approximately 8 grid points within the cutoff wavelength.

The evolution of the free surface during day 10 is plotted in Fig. 7, which shows solutic
obtained with RK3 and CN, both usingt = 2 min. The two solutions are directly com-
pared in Fig. 8, which depicts the free-surface elevation at the end of day 10. The res
show that the initial “bump” in the free-surface elevation gives rise to a right-moving wa
and a left-moving wave, with short-wavelength ripples preceding and trailing their cres
These ripples are caused by phase error that leads to dispersion. Since the gravity
speed is approximatively 100m/s, at the end of day 10, the right- and left-moving wa
have completed 26 round trips along the basin. Moreover, further analysis shows that
RK3 scheme introduces less dispersion than the CN scheme. This difference can be
in Fig. 8, where the solution obtained using the RK3 scheme has preserved the wave s
betterthan the CN scheme. The results also show that wave attenuation is very weak thrc
out the computation; energy transfer to short waves is also insignificant. Note that for
sametime step and fine-mesh size, the SGM solution rapidly breaks down because of bu
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FIG.5. Curves forH (top) andW; (bottom) forn = 2, and different values d{; andn..

of phase errors. Thus, the double-grid scheme provides an approach more suitable fo
construction of the large-time-step method.

The Crank—Nicolson and RK3 solutions are further compared in Figs. 9 and 10, wh
show simulations using the same model problem and spatial resolutions but with alarger
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FIG. 6. Application of the filterW, to the initial elevation field in Eq. (42). Full, filtered, and short-scale
spectra withk, = 15 (left) andk, = 10 (right).
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FIG. 7. Evolution of the free surface during day 10. Long waves are advanced using RK3 (top) and ¢
(bottom). In both casesht = 2 min, Ax = 10 km, AX = 30 km. The wave-CFL number on the coarse-grid
CFL,, = 0.396.

stepAt = 5min. The corresponding wave-CFL number on the coarse grid ig,GFD.996.
Figures 9 and 10 show that fart = 5 min, the CN and RK3 solutions exhibit noticeable
differences. Compared with solutions obtained with= 2 min, the RK3 solution shows
that the shape of the waves is well preserved, with weak wave attenuation of the w
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FIG. 8. Comparison of RK3 and CN solutions at the end of day 10. Same parameters as in Fig. 7.
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FIG. 9. Evolution of the free surface during day 10. Long waves are advanced using RK3 (top) and (
(bottom). In both casesh\t =5 min, Ax = 10 km, AX = 30 km. The wave-CFL number on the coarse-grid
CFL,, = 0.996.

amplitudes, which is particularly noticeable for the short-wavelength ripples. On the ott
hand, in the CN computation witht = 5 min phase errors build up substantially and the
solution deteriorates rapidly. The present experiences indicate that, in the present fractic
step framework, the use of accurate explicit schemes to propagate long-wave data on c
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FIG. 10. Comparison of RK3 and CN solutions at the end of day 10. Same parameters as in Fig. 9.
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grids is an attractive means to relax the integration time step while maintaining the qua
of the solution.

4.3.4. Effect of Grid Ratio

The previous computations suggest that the coarse-grid resolution should be sele
so that the corresponding wave-CFL number is not excessively large. This, in turn, s
gests the use of a large grid ratio. However, as pointed out earlier, the grid ratio shc
be carefully selected, so that the filtered quantities are well represented. For the pre
centered-difference approximations, a reasonable estimate is to require roughly 10 p
with the shortest cutoff wavelength, i.e.,ABmax ~ Lyetke. FOrke = 10, A Xmax~ 36 km.

To examine the effect oA X on the solution, computations are repeated using the RK
schemeAt = 2 min, andk; = 10. Three grid ratios are considered,= 3, 5, and 9. The
corresponding coarse-grid sizes &% = 30, 50, and 90 km, and the wave-CFL numbers
are CFl, = 0.396, 0.237, and 0.132. Fox¥ = 3, the solution is nearly identical to that
obtained withk; = 15, and shown in Figs. 7 and 8. Fgr= 5 andn, = 9, the evolution of
the free surface during day 10 is shown in Fig. 11; and the elevation at the end of day 1
plotted in Fig. 12. The results indicate thataX increases, the filtered fields may become
poorly represented on the coarse grid, which results in severe deterioration in the accu
of the solution.

Elevation (m)

2r

W,
i)
’// 2
o W i

- / /‘%/
1.5 //// l///,(,/,/z///// //C/f:/%;//////lz//
r /;///// ’//4//%;2// ’7,;!///////////3"
o5} //5”"’///,, -
B ///’//// 7 ////////// ",(/;/V///// //,/

W
//,,”////"//é o
///// -

/

0y

/////}////
% ///////f/

’/// ;v;/, ,,»!44/,,//
/ 4/

240

Time (hours)

Elevation (m)
r 7
75
15k // //7; ///// ////////
' - /'/ I 7 / /,// //,
05 ;‘ . ,//’7’/““::’//7"?7/, 7;5/ 3””/&;:/;;'33;/”////// ////’;//;//:"' %
=T //”// "// ///¢; ///’,’/ /-
) ///4//’5 ”//'//5'5’ . ”/ 7 /«:!///;”’/fév /i
0 I/ ,///¢ ///’//’///// /////////' = // ///f ///;////./ 3500
///////A,‘w/// ////,///,///,,,“///5//// ,,//////’ 5000
'(,//// /7//' /////////41/»-«////////’;;;;;;// 2500
Y25,
7 ///,:‘;//,/ ;,(///,
Z

2 R
Yy %
240 /

252
. 256
Time (hours) 260

FIG.11. Evolution of the free surface during day 10. Long waves are advanced using RK& ¥ith 50 km
(top) andA X = 90 km (bottom). The corresponding grid ratiosare= 5 andn, = 9, and the wave-CFL numbers
CFL, = 0.237 and 0.132, respectively. In both casts~= 2 min, andAx = 10 km.
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FIG. 12. Comparison of RK3 solutions after 10 days, usih = 50 km andA X = 90 km. In both cases,
At =2 min, andAx = 10 km.

The present computations indicate that the coarse-grid size should be selected to el
adequate representation of filtered quantities. Generally, the coarse-grid size shouls
smaller than the filter size, and the required number of grid points for accurate discretiza
depends on the filter shape and on the type of spatial discretization. For the present cent
difference approximations and selected filter type, we find that about 8 grid points
sufficient to adequately capture all the dynamics up to the filter scale. This requirement r
be relaxed if higher-order discretizations are used, and this provides additional motiva

for the spectral-element discretization of the following section.

4.3.5. Further Analysis of Behavior

We conclude this section with a short remark on the behavior of the split scheme, f
ticularly concerning the quality of the long-wave prediction. We briefly address this iss
by comparing in Fig. 13 the free-surface elevation computed using the split scheme ¢
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FIG. 13. Solutions at end of 2 days for the fully explicit schemes on codxse-=(120) or fine (N = 360)
grids and for the split scheme with the same coarse or fine grids. The explicit solutions are obtained with AB3
At = 10 s. The split scheme uses RK3 for large-wave propagation and a design filté with5. Only the left

half of the domain is shown.
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grid with N. = 120 andN¢ = 360 to predictions obtained using fully explicit schemes or
grids with N = 120 andN = 360. The comparison shows that the prediction of the spl
scheme is very close to that obtained using the explicit schemeNwvith120. (Generally,

we find a general agreement between the split and unsplit computations when the resol
of the coarse mesh in the split computations is the same as that of the unsplit scheme.
the other hand, notable differences can be observed between the results of the split sc
at unsplit computations at finer resolution levll,= 360. These differences are due to
the amplification of phase errors in the propagation of the surface gravity waves and
the result of splitting errors. To verify this claim, we first examine the effect of the tim
step by contrasting in Fig. 14 elevation profiles obtained with different values ofhe

differences between the split and unsplit solutions are shown in Fig. 15. The results sl
that the predictions of both split and unsplit calculations are essentially independent of
value of the time step, indicating that differences observed in Fig. 13 are dominated
spatial (phase) errors. Combined with the above experiences, the present results inc
that the split scheme enables efficient prediction of long free-surface waves with an e
level comparable to that of the unsplit computation at the coarse resolution level. Moreo
because of the implicit treatment at large CFL, the propagation of short waves on the
grid may not be captured accurately. In practical situations, however, this does not lea
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FIG. 14. Effect of the time step on the computed free-surface elevation for the fully explicit (top) and sp
(bottom) schemes. The explicit calculations are performed on a grid\vith120, using AB3 integration with
At =5 and 10 s. The split scheme calculations are performed on a grid hiyirg120 andN; = 360, with
time stepsAt = 10 and 120 s.
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FIG. 15. Differences between the solutions given in Fig. 14.

major difficulty since short scales generally tend to be dominated by (nonlinear) advect
phenomena.

Finally, we note that since the extraction of long waves is based on a convolution operat
the long-wave propagation may depend on the properties of the selected filter. We F
performed a detailed study (not shown) to determine the effect of the filter on the predictic
We have found that the propagation of long waves and the corresponding phase el
depend only weakly on the choice of the filter when, first, the filter size is appropriate
selected and, second, the large-scale component of the solution is well resolved on
coarse grid. In particular, the computations show that predictions obtained with the des
filter are essentially identical to those obtained with a Fourier-spectral cutoff. By introduci
noticeable damping at low wavenumbers, Gaussian-type filters do not fully capture the lo
wave component of the solution and produce very small but noticeable differences from
spectral-cutoff and design filters. For these reasons, the design filter has been preferre

5. SPECTRAL-ELEMENT COMPUTATIONS

Section 4 illustrated a finite-difference implementation of the splitting procedure pr
posed here. Its basic conclusions are (a) a double-grid method is necessary if an acc
representation of the large-scale wave is desired, (b) the errors in the split scheme ar
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worse than those resulting from the unsplit integration of the equation on the same co
grid, and (c) the filter must eliminate high-wavenumber features unresolvable on the co
grid. With these lessons in mind, we proceed to investigate the implementation of
splitting scheme on a spectral-element discretization of the shallow-water equations.

The spectral-element method is lap type finite-element method that relies on high-
order polynomials, usually of degree 4—11, to interpolate the solution within each elemer
thus allows two paths to convergence: algebraic if the polynomial degree is held fixed wi
the number of elements is increaskeréfinement); and exponential if the elemental parti-
tionis held fixed and the degree of the interpolating polynomial is incregsesfihement),
and provided the solution is smooth. We present a very brief description of the spect
element discretization in the following section, and we refer the reader to [19-24] for m
details.

We focus below on the issues pertaining to the splitting procedure, namely the definiti
of the fine and coarse grids, the transfer of information between the two grids, and the
plementation of the averaging operator. We conclude this section with a series of numel
experiments to test the spectral-element version of the split scheme.

5.1. Spectral-Element Discretization

We present the spectral-element formulation for Eq. (2); the formulation for the individL
split system can be derived similarly. The variational form of Eq. (2) is

1
/cI>utdA+/CI>—2V§dA=/(—uV~u+b)CI>dA (53)
A A € A

/\IJQdA—/(h+§)u~V\IJdA:—/ W(h+¢)u-nds, (54)
A A A

where® and W are the test functions associated with the velocity and pressure, resp
tively. The divergence term in the continuity equation has been integrated by parts, anc
boundary integral on the right-hand side of Eq. (54) represents the volume of fluid leav
the domain( is the outward unit normal to the boundary); this integral is zero if the doma
is closed.

The spectral-element discretization step relies on dividing the domain into element:
which the solution is interpolated. In 1D, the interpolation is expressed as

N

u@) = > uh') (55)
i=0
N—-2

t&) =Y _ ahf@, (56)
i=0

whereh? andh? are the Legendre Cardinal functions [25] for the velocity and pressure gric
respectively. These are defined on the Gauss—Lobatto roots of the Legendre polynomie
degreeN andN — 2. We have used a polynomial of lower order for the pressure in ord
to stagger the pressure and velocity collocation points, and thus suppress spurious pre
modes [12]. Setting@ = h? and¥ = h’, and substituting the interpolation formulas in the
variational form, we obtain a system of ordinary differential equations in time which mu
be integrated according to the splitting procedure. We note that the integrals arising fi
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the variational form are evaluated with Gauss—Lobatto quadrature which leads to a diag
mass matrix for the velocity and pressure. The time discretizations we have implemer
are third-order Adams—Bashforth for System I, third-order Runge—Kutta for System Il, a
finally first-order Euler-Backward for System Ill.

5.2. Coarse Grids

The h-p character of the spectral element method offers severals approaches to cc
ening the grid:p-coarsening, which consists of holding the elemental partition fixed whil
decreasing the degree of the polynomidy,h-coarsening, where several elements are col
lapsed into one coarse element (element corners on the coarse grid are corners of eler
on the fine grid)h- p coarsening, where the coarse elements are allowed to have a differ
spectral truncation than the fine grid; and, finally, a coarse grid where the elements’ cort
do not necessarily coincide with those of fine elements. (We do not pursue this last apprc
here as it does not extend easily to two dimensions.)

Experimentation has shown thatcoarsening alone is not flexible enough because of th
(relatively) small number of spectral modes used in spectral-element methods and wt
in practical circumstances, ranges from 4 to 11. In addition, the spectral truncation on
coarse elements cannot be made arbitrarily small without degrading the spectral prope
of the numerical scheme.

We have studied two methods for the calculations of the coarse-grid fields. The first ¢
is the convolution filter (26) and its associated transfer function defined in (52). The con
lution integral is evaluated as a sum of elemental contributions which are calculated v
Gauss—Lobatto quadrature; the procedure thus consists of elemental matrix—vector prod
There are two drawbacks to the convolution approach that make it difficult to generalize
two dimensions. First, the weight function is only known in Fourier space through its trar
fer functionH, which must be Fourier-transformed back to physical space. This inversior
in general difficult to calculate in two-dimensional domains with complicated geometrie
In the present work, the weight function is evaluated on a dense equi-spaced grid via |
before it is interpolated to the spectral-element collocation grid. Second, the storage of
convolution matrices increases as the square of the number of nodes in the grid, anc
comes quickly impractical in two dimensions. Storage can be saved by taking advantag
the decaying character of the weight function and by discarding the contributions of no
further away than a specified cutoff distance. This saving, however, is complicated to cc
particularly in two-dimensional unstructured domains.

In order to circumvent the aforementioned difficulties, we have implemented a project
method to calculate the coarse-grid variables. This projection is essentially designed fol
h-p coarsening where the corners of the coarse elements coincide with fine-element cort
The projection method is a modification of the mortar projection presented in keéain
[26]. Its highlights are that it operates at the coarse-element level, preserves the contir
of the function across coarse-element boundaries, and minimizes the difference betwee
coarse and fine representations. The following section describes the projection approa

5.3. Projection Approach

Le_tl:denote acoarse element comprisibfine element$y, k =1, ..., K; see Fig. 16.
Let N andN be the order of spectral interpolation on the coarse and fine grids, respectiv
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FIG. 16. Relative position of fine-elemeiit, within coarse-elemertt; s is the offset between the corner
of the coarse element and that of the fine elements. The fine and coarse elements have separate comput
coordinateg andé, respectively.

A functionu on the fine grid admits a representation in terms offtheegendre Cardinal
functions:

N
UXEDIr, =D ulhM@). (57)
i=0

Its projectionu onto the coarse element can be similarly written as a series of Legent
Cardinal functions of ordeN:

'\T - —
UX(E) = Y Umh(®). (58)
m=0

Here,hN and hﬂ denote the fine and coarse Legendre Cardinal functions defined on
Gauss-Lobatto roots of ordé and N, respectively. The projection is defined by the
following:

/(J—u)xpdx:o vy € P(I)
T
aE =-1) =ul¢ =-1 (59)
UE=1=ukE =1,

Here, P(T") denotes the space of polynomials definedronf degree less than or equal
to N — 2. Relation (59) fixes the function values at the endpoints of the elements to the
given on the fine grid and requires that- U be orthogonal to the spa@e(l:); i.e.,uand
u have the same coefficients in the bagis Note that because of the two constraints at the
end points, only an addition& — 2 constraints can be imposed on

The choice of basis foIP(I_‘) is at our disposal, and, for convenience, we choose a set
modified Legendre Cardinal functions,

— ,7 - N '\T N
~Ly® (1 qu)(“ét), g=1....N-1 (60)
NN + DL (EN) (& — &)

Vq(é) =

whereL  is the Legendre polynomial of degrék ands)N, g = 1. ..., N — 1 are the roots
of Lg. Theyq are polynomials of degrel — 2, and also are the Lagrangian interpolants
on the interior Gauss—Lobatto roots lof;, i.e., the coarse-grid collocation points minus
the endpoints.
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The discrete form of the projection operator is obtained by inserting (57) and (58) ir
(59):

i (/ hr’:Wq|Xg|d§>

m=0

Mx

N
Z(/ thq|x§]d§)u}‘, 1<q<N-1
1i=0

0= (61)

C||>|~—

K
= uy.

=

Thexg andx'g are the metric factors of the mapping between physical space and the cc
putational spaces of the coarse and fine grids, respectively. The integrals on the left-f
side can be computed exactly with Gauss—Lobatto quadrature of Er,ctemvidedxg is

(at most) a linear function. Similarly, the integrals on the right-hand side can be compu
exactly with Gauss—Lobatto quadrature of orblen each element of the fine grid provided
thatN > N. Equations (61) ar®l + 1 equations in th& + 1 unknowndl,,,. Note that the
choice of quadrature and weight functions produces a diagonal matrix on the right-h:
side, thus reducing the operation count needed for the projection. The latter can thu:
written compactly as a matrix vector product of the form

K N
Ug= > Quuf. 0=g=N. (62)

k=1 i=0

The formulas for thngi are listed in the Appendix.

5.4. Numerical Experiments
5.4.1. Periodic Channel

Here, we reconsider the periodic channel problem of Section 4.1, but with a modifi
initial condition of the form

2
ux,t=0=0 ¢x,t=0=0. 5exp[O 035<X - ;) ] + O.OSSin(Zn)LX) (63)

The initial wave form is made up of two distinct waves, a large-scale Gaussian hump w
a decay length scale @f0.005L = 255 km and amplitude of.8 m, and a small-scale sine
wave with one-tenth the amplitude with wavelengtk= 120 km. The Fourier spectrum
of the surface displacement has very small Fourier coeffcigat.10'%) for all Fourier
modesn > 21, exceptn = 31, where there is a single spike. This separation in spectr
space allows us to call the first part the large wave, and the other part the small wave.
remaining physical parameters of the problem are sét+©3600 km,D = 1000 m,and

g = 10 m/g. The wave speed iggh = 100 m/s; hence the wave needs 10 h to return t
its initial position.

The aim of the numerical simulations reported here is to assess the ability of the s
scheme to propagate the large-scale wave properly, to investigate the sensitivity of
solution to the method used to transfer information between the coarse and fine grids (f
versus projection method), and finally to experiment with the different coarsening strateg
To compare quantitatively the different numerical experiments, we define an error mea:s
that focuses primarily on the large-scale component of the wave. This large-scale compo
is extracted by padding the spectrum of the solution with zero for all modes higher than
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TABLE |

Unsplit Split filter Split projection
K N At €00 € €0 €2 €0 €2
24 15 10 1.60e-3 1.21e-5
24 11 20 1.50e-3 1.16e-5 1.40e-3 1.50e-5 1.60e-3 1.22e-!
24 9 40 1.90e-3 1.36e-5 1.59e-3 1.51e-5 1.70e-3 1.19e-!
24 7 60 4.80e-3 2.86e-5 2.64e-3 2.36e-5 2.40e-3 1.68e-!
24 5 150 4.70e-2 2.88e-4 2.19e-3 1.40e-4 1.57e-2 8.54e-!
24 3 400 4.09e-1 3.30e-3 4.37e-1 2.98e-3 4.47e-1 3.90e-

Note. pcoarsening, fine grid has§ = 24 andN = 15; the coarse grid has = 24.¢, refers to the rms error
in the surface elevation, ard, to the maximum error.

Tables I, I, and Il summarize the results of our numerical experiments foptime
and mixedh-p coarsening, respectively. Three solutions are computed for each set
coarsening experiment: a reference solution using the original unsplit scheme compute
the coarse grid of the split scheme, and two split scheme solutions using either the de
filter or the projection method to transfer information between the fine and coarse gri
(The filter parameters were held fixeckat= 10 andn. = 1.) In addition, we have dropped
the nonlinear terms from the shallow-water equations for this particular set of experime
and all errors reported herein used the analytical solution to the linearized equations
reference.

We note that the elemental partition of the fine grid consists of 24 150-km elemer
with each element holding 1.25 small waves. Using Boyd’s rule of thumb [25} 5 +
4(M — 1), whereM is the number of waves within an element, the small waves are resolv
to better than 1% accuracy on the fine grid fér> 7. None of the coarse grids listed in
the tables can resolve the small-scale wave, except fopit@arsening case witN > 7.
We also note that aBl increases, the spectral-element model becomes more spectra
character, and the minimum grid spacing decreaseg 3; thus the most stringent CFL
restriction is encountered fot = 24 andN = 15.

Examination of maximum and rms errors in Tables I-lll reveals that the numerical err
of the split scheme are similar to those of the coarse-grid unsplit scheme; thus the er
introduced by the splitting are small. The tables also reveal that the split scheme all
a substantially larger time step without incurring an undue penalty in the accuracy of

TABLE Il
Unsplit Split filter Split projection

K N At € € €0 € [ €

24 9 40 1.90e-3 1.36e-5

12 9 80 1.06e-2 6.20e-5 3.10e-3 2.00e-5 6.40e-3 4.72e-
8 9 120 2.91e-2 2.26e-4 5.32e-3 3.20e-5 2.78e-2 3.95e-
6 9 160 5.37e-2 3.36e-4 1.10e-1 1.65e-3 2.19e-2 1.55e-
4 9 240 1.07e-1 7.18e-4 9.08¢-1 8.72e-2 7.34e-2 5.80e-4

Note. hcoarsening, fine grid has = 24 andN = 9; the coarse grid has = 9. Simulations marked with
were unstable due to a leakage of small-scale wave onto the coarse-grid solution.
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TABLE Il
Unsplit Split filter Split projection
K N At €00 € [ € [ €
12 7 120 3.20e-2 2.64e-4 5.36e-3 3.78e-5 1.94e-2 2.59e-
12 5 300 1.40e-1 9.35e-4 4.76e-1 6.98e-3 8.29%e-2 6.65e-
8 7 200 8.17e-2 7.92e-4 3.25e-2 2.16e-4 3.87e-2 6.65e-
8 5 450 2.10e-1 1.50e-3 T T 2.10e-1 1.80e-3
6 7 250 1.13e-1 7.42e-4 T T 5.00e-1 4.00e-3
6 5 600 2.59%e-1 1.80e-3 T T 3.10e-1 2.60e-3

Note. hp coarsening, fine grid ha$ = 24 andN = 9. Simulations marked with awere unstable due to a
leakage of small-scale wave onto the coarse-grid solution.

large-scale wave. This is particularly true when there is a large difference in spectral trur
tion between the coarse and fine grids (Table I); however, we note that the errors deteriol
rapidly for N < 7 becase of increased numerical dispersion errors, and become unacc
able forN = 3. The increase in allowable time step is smaller forhheoarsening case
(Table 1) and grows in proportion th L.

The filter and projection split schemes behave similarly forgkmparsening case, with
both schemes producing an accurate estimate of the large-scale component of the v
The filter's performance in the-coarsening experiment is mixed: it produces smaller error
than the projection foK equal to 24 and 12, and worse errors for< 8. The explanation
of this behavior resides in the choice of filter parameters in (52) which were held fixed
k. = 10 andn.; = 1. The filter scheme yields accurate results as long the coarse grid ¢
resolve a Fourier mode of wavenumber less than or eqikal tésing Boyd'’s rule of thumb,
this translates into a requirement dhof the formN > 5+ 4(kC/K_ —1). Alternatively,
one can choode. = (I\T +1) K_/4 to guarantee a well-resolved wave on the coarse grid, &
issue that we do not pursue here. The projection method displays a more robust beh:
because it adapts automatically to the coarse-grid resolution.

The present numerical experiments demonstrate that the split scheme improves the st
ity limit imposed by the wave speed, particularly when there is a large difference betwe
the spectral truncations of the fine and the coarse grid. They also demonstrate tha
coarse-grid spectral truncation must be greater than 4 in order to produce an accurat
timate of the large-scale waves. The optimum coarse grid for the present problem is
h-p coarsened grid with = 8 andN = 7. It provides for an acceptable error level and a
fivefold increase in the time step.

5.4.2. Long-Time Integration

The ability of the split scheme to propagate the large-scale waves for long time is illt
trated by integrating the previous example for 30 days. The fine grid in this example cons
of 24 elements of order 9, and the coarse grid of 8 elements of order 7. The initial condit
is as before but without the small-scale perturbations. We compare the results of the -
scheme with those obtained from an unsplit explicit integration whose time step respe
the wave-CFL condition on the fine grid. Figure 17 show the results of the split integrati
with At = 240 s andAt = 120 s, together with the results of the explicit integration with
At = 40 s. The splitting scheme shows good agreement with the fully explicit scheme w
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FIG. 17. Surface elevation after 30 days of integration with the split scheme with two different time stey
(—-) At = 240 s, and (—) At = 120 s, and with explicit scheme using (-A} = 40 s.

regard to the phase speed of the wave. However, the wave amplitude in the split sch
displays a slight decay, which decreases with the time step. This decay is mainly due tc
integration of the short waves by the dissipative backward Euler scheme. To verify this,
perform the standard semi-implicit integration of the unsplit wave system using a backw
Euler for the gravity terms. As shown in Fig. 18, the semi-implicit scheme has effective
dissipated the solution after just 1 day, while both explicit and split schemes preserve m
of the amplitude of the solution.

5.4.3. Variable Bathymetry

The presence of topography can lead to wave generation, and it is therefore importa
test the split scheme in the presence of topography. Consistent with the assumptions il
asymptotic analysis, we consider only large-scale topographic variations. Figure 19 sh
the topography chosen for the present experiment. The depth consists of the superpo:s
of an exponential “hill” with a sine wave of mode 4. Note that the sine wave leads tc
nonsymmetric profile and that the depth variations exceed 50% of the mean depth.

The initial perturbation of the free surface is the large-scale wave of the previous t
problem, but centered on the first third of the computational domain. A 2-min time st
is chosen; the remainder of the numerical parameters are as follows: the coarse gric
24 elements withN = 14, the coarse grid has 10 elements with= 9, and the cutoff
wavenumber has been setto 12 aptb 1. These values lead to a Cf-equal to 0.82 based
on a reference depth of 2000 m.
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FIG. 18. Surface elevation after 5 days of integration with the split scheme using 240 s (—-), the unsplit
semi-implicit scheme usingt = 240 s (—), and the unsplit explicit scheme using = 40 s (—).

The time evolution of the free surface is plotted in Fig. 20. The results show that wa
propagation is substantially affected by depth variation. As in the previous cases, left-
right-propagating components of the initial perturbation are still clearly tractable, butin t
present case the generation of new modes can be observed. Note also that for the time
considered (1 day), the evolution seems to be roughly periodic with characteristic per

close toL ref/+/gHres =~ 10 h.

5.4.4. Wall Boundary Conditions

The implementation of the averaging and filtering operators in the examples above
pended implicitly on the periodicity conditions. These operators must be modified f
nonperiodic boundary conditions in order to prevent the support of the weight functi
from extending outside the computational domain. The modified averaging and filter

1.5 | ] |
0 1000 2000 3000
z in Km

FIG. 19. Normalized depth for computational case of Section 5.4.4.
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FIG. 20. Evolution of the free-surface perturbation during day 9 for periodic and variable test case. De|
profile is given in Fig. 19At = 2 min, andk, = 12.

operators must also be able to handle one-sided averaging footprints near the boun
This is easily implemented in one-dimensional problems by truncating the convolution
the fields withW and renormalizing the truncated weight function. The performance «
the truncated averaging operator is briefly illustrated by considering the same domain
initial conditions as in the previous example, but with the perdiocity velocity conditions r
placed with homogeneous Dirichlet boundary conditions. The evolution of the free-surf:
perturbation is plotted in Fig. 21. It shows that the truncated averaging operator in the clo
domain does not introduce spurious oscillations. The loss of spatial periodicity is clec
visible, as neither the initial conditions nor the depth profile is symmetric.
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FIG.21. Evolution of the free-surface perturbation during day 9 for the wall boundary conditions and varial
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The truncation of the weight function and renormalization are much harder to implem
for two-dimensional problems, particularly if the basin geometry is complicated and if tl
grid is unstructured. The difficulties stem from the facts that, first, the transfer funidtion
in Eg. (52) cannot be inverted easily to obt&l\fy, and, second, the storage requiremen
would increase subtantially. We note, finally, that the projection operator does not dep
on periodicity because it operates locally at the (coarse) element level, and because it
not modify the boundary values.

6. CONCLUSION

We have exploited our multiple-scale analysis of the shallow-water equations to des
a new multiple-pressure-variable (MPV) solver that is effective in defeating the stifine
from the high speed of surface gravity waves. Our MPV approach splits the barotro
pressure, i.e., the surface elevation, into three components that are integrated separ
The first component, dubbed the slow mode, responds to slow dynamics such as inte
wave motion and advection. The second component is the large-scale pressure respol
to the fast dynamics of the surface gravity wave. The third component is the small-sc
pressure that also corresponds to the fast, “near-equilibrium” dynamics of the surface w.

We have constructed finite-difference and spectral-element versions of our MPV shallc
water solver. The two versions yield similar results and confirm that the splitting of tl
pressure succeeds in defeating the stability limit imposed by the surface gravity wa
regardless of the underlying spatial discretization.

The integration of the large-scale pressure requires the formation of a coarse mesh w
the CFL limit on the fast gravity waves would be comparable to the convective CFL lirr
on the original grid. This coarsening can be achieved in one of three ways in SEO
p-coarsening, where the elemental partition would be kept the same and the order of
interpolation polynomial would be reduced to linelarcoarsening, where the interpolation
orderwould be kept constant but a coarse element would be formed from the union of sev
fine elements; and finally a combinationtefp coarsening. Our experiments revealed tha
pure p-coarsening is not a viable choice because the accuracy of the scheme deterior
and became unacceptable when linear or quadratic interpolation was used. These low-(
interpolations introduced a large dispersive numerical error that distorted the propaga
of the large-scale pressure wave. This error became insignificant as soon as the degree
interpolation polynomial exceeded 5. We have thus adoptéd@ooarsening strategy that
bunches fine elements together to form the coarse element and that keeps the interpol
order comparable to the one in the original fine grid.

The calculation of the large-scale pressure requires the application of a suitable a
aging and filtering operator with good spectral properties on the coarse grid, i.e., one"
eliminates all small-scale structures since these adversely affect the integration step. W
Gaussian-type averaging operators proved to be adequate, computed results showed tt
spectral-like design filter is superior, particularly for the finite-difference version. For spe
tral elements, the spectral averaging is limited since “global spectra” on complex dome
with unstructured grids are difficult to form. We have thus relied on the local spectrum
the coarse element level in order to segregate the large-scale signal from the small-
component. We have devised a projection-type method, borrowed from the mortar-elen
method, to transfer information between the coarse and fine grids. This projection has g
interpolation and stability property and has been retained in our code.
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We have adopted the following integration schemes for each component in the solut
(a) an explicit third-order Adams—Bashforth scheme (AB3) for advection terms, (b) a thi
order Runge—Kutta scheme (RK3) for the large-scale pressure mode, and (c) an img
Crank—Nicholson scheme (CN2) or afirst-order Euler-Backward scheme (EB) for the sm
scale pressure mode. The RK3 proved to be superiorto CN2 for the large-scale pressure |
because it has substantially less dispersive errors and has acceptable stability prope
For the small-scale pressure mode, the CN2 proved to be adequate for the finite-differe
version but unstable for the spectral-element version. This was traced back to the dissip:s
properties of the CN2 scheme when the time step exceeded the explicit stability limit
a large factor. In this regime, small-scale waves are underdamped by CN2 and can
to a buildup of energy at the tail-end of the spectrum and thus to unstable behavior.
spectral-element version turned out to be more sensitive to such aliasing than the fii
difference version, and thus required the adoption of a more stable integration scheme
as EB.

In summary, our numerical experiments with the one-dimensional version have allov
us to finalize our choices for the coarsening strategy, averaging and filtering operator
compute the large-scale signals, and the integration schemes for each pressure mode
splitting algorithm has been extended to two dimensions and is currently being tested.

APPENDIX

The evaluation of the integrals involves the mappings between the computational sp:
of the fine and coarse elements and physical space. The two mappings are liokey by
x(€) for x € Ty, wheret is the computational coordinate in the coarse elementgasd
the computational coordinate in the fine element. In one-dimensional problems where
elements are stretched linearly only, we have the relation

= 2 [T
= Ss—1+4+ M@E 4, 64
&) |F|S + ] ¢+ (64)

Where|l:| is the length of the coarse eleme|m_tk| is the length of the fine element, asds
an offset between the two (see Fig. 16).
The entries of the projection matrix are given by

QY = Siod (65)

Qckﬂ _ YqEEN N XEl — 5i05k1UéE;ol/fq(—1) — SindkkUR Bmﬂq(l)7 1<q<N (66)
q

QY = Siod (67)

Bq = w&“lxglq, (68)

whereoN andwN are, respectively, th&lth and Nth order Gauss-Lobatto quadrature
weights|x;|q is the metric of the transformation between physical space and the coar
element computational space evaluateia a|b<§|i is the corresponding fine-element metrics
evaluated agik, andénmn, is the Kronecker delta.
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