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Direct representation of the free surface in ocean circulation models leads to a
number of computational difficulties that are due to the fast time scales associated
with free-surface waves. These fast time scales generally result in severe time-step
restrictions when the free surface is advanced using an explicit scheme and may
result in large phase errors when the free surface is treated implicitly with a large
time step. A multiple-scale analysis of the shallow-water equations is used to an-
alyze this stiffness and to guide the construction of a computational methodology
that overcomes the associated difficulties. Specifically, we explore a class of frac-
tional step methods that utilize coarsened grids in the propagation of long-wave
data. The behavior of the corresponding schemes is examined in detail in light
of one-dimensional model problems, based on finite-difference or spectral-element
discretizations. c© 2001 Academic Press
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1. INTRODUCTION

The ocean is subject to numerous forcing agents (e.g., tides, wind stress, solar radia-
tion) with widely varying spatial (a few meters to thousand of kilometers) and temporal
scales (minutes to decades). The ocean’s response to these forcing mechanisms exhibits
similarly broad spatial and temporal spectra. The fastest such response relevant to physical
oceanographic processes are gravity waves that travel on the surface of the ocean at speeds
exceeding 200 m/s in deep waters. Gravity waves carry energy and momentum across
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large distances with little damping and thus allow a localized disturbance to propagate its
influence over a large region.

The evolution of free-surface waves in ocean simulations leads to a number of compu-
tational difficulties. One of these difficulties concerns the nonlinear evolution of the free
surface whose location is unknown a priori and must be computed as part of the solu-
tion. Another—more pronounced—example is the great disparity between the gravity wave
speed and the characteristic advection velocity, which typically does not exceed 1–2 m/s.
This disparity is usually expressed by the fact that the Froude number, defined as the ratio
of advection velocity to gravity wave speed, is very small. As a consequence, free-surface
models using explicit integration schemes (which are generally subject to a CFL time-
step limit based on the highest wave speed) are restricted to time steps several orders of
magnitude smaller than the time scale of phenomena of interest. As a result, extended high-
resolution ocean simulations, such as those needed to model the mesoscale circulation, are
expensive.

Ocean models have traditionally relied on the rigid-lid assumption [1, 2] to circumvent
the computational difficulties of low-Froude-number free-surface flow. Fast gravity waves
are thus suppressed and longer time steps can be used. This benefit comes at the cost of
compensating for the rigid-lid assumption, either by computing a sea-surface pressure from
the depth-integrated equations [3] or by solving a vorticity–streamfunction equation for the
depth-averaged flow [1, 2].

Several difficulties hinder the usefulness of the streamfunction–vorticity formulation.
One is the need to specify vorticity boundary conditions. Another difficulty arises for mul-
tiply connected domains, where additional integral conditions must be derived in order to
determine streamfunction values around islands. The island conditions in particular com-
plicate the solution process and inhibit parallelization of the model [3]. The sea-surface
pressure formulation avoids the computational disadvantages of the streamfunction formu-
lation. However, it too requires derived boundary conditions for the surface pressure. The
biggest limitation of both approaches is that they treat the surface variable, the stream-
function in the streamfunction–vorticity formulation and sea-surface pressure in the latter
formulation, as a diagnostic variable which inhibits the assimilation of satellite altimetry
data in rigid-lid ocean models [4].

From a physical point of view, an evolution equation for the sea-surface displacement
is highly desirable. First, it significantly simplifies the process of assimilating satellite
altimetry data in ocean models. Such assimilation has proven to be extremely valuable in
improving the models’ performance since they integrate in the model a continuous, global,
and spatially dense data set. Second, it allows the simulation of high-frequency dynamics,
such as tides, that would otherwise be excluded under the rigid-lid assumption. These
high-frequency dynamics can play an important role in transferring energy between the
external and interior modes of the ocean, in the evolution of internal tides, in enhancing the
dissipation of energy via enhanced bottom drag, and so forth.

To avoid otherwise prohibitive computation costs, it is imperative in free-surface models
to separate the integration of the gravity waves, also referred to as fast modes, from the
remaining dynamics. To this end, the three-dimensional governing equations are integrated
vertically. The resulting depth-averaged equations, referred to as the shallow-water equa-
tions or the barotropic equations, contain the fast modes (e.g., [5, 6]). The shallow-water
equations are coupled to the original set of equations through the nonlinear advection terms
which link the slow and fast modes.
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One approach to integrating the two- and three-dimensional equations is the so-called
split-explicit method: the depth-mean equations are subtracted from the original three-
dimensional equations to obtain the baroclinic equations which govern the three-dimensional
evolution of the slow modes. The two-dimensional equations are advanced explicitly in time
using a small time step dictated by the fast modes, while the three-dimensional equations
are advanced with a larger time step (e.g., [7]). This asynchronous integration complicates
the coupling of the fast and slow modes and must be filtered temporally in order to suppress
a weak instability [8].

Synchronous large-time-step integration of the equations can be performed if a semi-
implicit scheme is adopted for the two-dimensional equations (e.g., [9, 10]). The semi-
implicit formulation generates a set of simultaneous equations which must be solved
efficiently in order to keep the overall cost of the simulation at a reasonable level. The geo-
metric complexity of ocean basins precludes the application of specialized direct solvers,
such as fast Fourier methods. Thus, direct solvers are restricted to matrix-based techniques
which are cost-effective when the size of the problem is small. However, when the size of the
problem increases, the performance of direct matrix-based solvers deteriorates, primarily
because of excessive memory requirements and to some extent poor scalability properties.
Thus, for large problems, the application of iterative solvers is a more viable approach.
Their effectiveness hinges on keeping the number and cost of iterations small.

Unfortunately, a large-time-step implicit treatment of the fast modes generally leads to
undesirable side effects, including excessive damping and/or aliasing of the waves. Thus,
irrespective of the solution approach and iteration cost, straightforward application of semi-
implicit schemes may not necessarily yield a significant improvement over split-explicit
schemes.

Our objective herein is to improve the treatment of fast surface gravity waves in ocean
models. The new algorithms proposed target the models’ ability to integrate the fast gravity
modes accurately and efficiently during long-term simulations. We focus our attention
exclusively on the solution of the shallow-water equations, which are the equations solved
during the fast wave update. Our new approach is inspired by Klein’s recent multiple-scale
analysis of the weakly compressible Euler equations [11]. This analysis has led to a multiple-
pressure-variable (MPV) low-Mach-number simulation scheme with features analogous to
those desired.

The present article is organized as follows. In Section 2, we exploit the similarities be-
tween the shallow-water equations and the equations of gas dynamics, where the Mach
number is the analogue of the Froude number, to adapt the results and methodology of
[11] to the shallow-water equations. Based on the multiple-scale methodology, we outline
in Section 3 the splitting of the shallow-water equations into three subsystems which are
integrated via a fractional step approach. The splitting is based on (a) performing a frac-
tional step update of advection and external forcing, (b) defining/extracting long-wave data
using a filtering procedure, (c) propagating long-wave data using an explicit scheme on a
coarsened grid, (d) interpolating the preliminary long-wave update onto the fine grid, and
(e) finally performing an implicit short-wave update. We have implemented our scheme
using two different spatial discretization schemes in order to demonstrate the generality of
our approach. The first implementation relies on finite differences and is used in Section 4
to test various aspects of the algorithm, including the splitting, filtering, and interpolation
procedures. Spectral-element discretization [12] is then introduced in Section 5, and the
computations are extended to variable bathymetry and fixed wall conditions. We restrict
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our attention to the splitting formulation and 1D tests; multidimensional implementation
and numerical tests that include fastand slow modes will be discussed elsewhere [13].
Major conclusions are summarized in Section 6.

2. ASYMPTOTIC ANALYSIS OF THE SHALLOW-WATER EQUATIONS

2.1. Governing Equations

As mentioned in the Introduction, we focus on a reduced ocean circulation model that is
based on the 2D shallow-water equations

∂Ũ
∂ t̃
+ Ũ · ∇̃Ũ + g̃∇̃ ζ̃ = b̃ (1a)

∂ζ̃

∂ t̃
+ ∇̃ · [(h̃+ ζ̃ )Ũ] = 0, (1b)

whereŨ is the depth averaged velocity,g̃ is the gravitational acceleration,ζ̃ is the free-
surface displacement,h̃ is the rest depth, and̃b is a general forcing term, which include,
among other things, wind stresses, Coriolis force, and dissipation. Tildes are used to denote
dimensional quantities. Equation (1) must be supplemented with adequate boundary and
initial conditions, which will be discussed later.

The above system of equations is obtained by depth-averaging the three-dimensional
equations of motion, which should generally be used in modeling slow internal motions.
The “reduced” system (1), however, is suitable for the present study, which focuses on the
treatment of fast free-surface waves.

2.2. Relevant Scales and Normalization

In order to facilitate the analysis, the governing equations are first normalized. For ocean
circulation problems of interest to the present work, the horizontal length scaleL̃ ref is on the
order of 1000 km, the vertical length scaleH̃ ref is on the order of 1 km, and the characteristic
advection velocityŨ ref is on the order of 1 m/s or smaller. Using the characteristic advection
velocity and horizontal length scale, one can form a characteristic time scale,T̃ref ≡ L̃ ref/

Ũ ref. With the present choices of characteristic length, time, and velocity scales, the gov-
erning equations are normalized as

∂u
∂t
+ u · ∇u+ 1

ε2
∇ζ = b (2a)

∂ζ

∂t
+∇ · [(h+ ζ )u] = 0, (2b)

whereu ≡ Ũ/Ũ ref, t ≡ t̃/T̃ref, h ≡ h̃/H̃ ref, ζ ≡ ζ̃ /H̃ ref, b≡ b̃L̃ ref/Ũ2
ref, and∇ ≡ L̃ ref∇̃.

Note that the normalization procedure leads to the definition of a dimensionless parameter,
ε2 ≡ Ũ2

ref/(g̃H̃ ref). Theε is in fact the Froude number, and the inequalityε ¿ 1 expresses
the fact that the characteristic advection velocity is much smaller than the speed of free-
surface gravity waves; in deep water, for example, the Froude number is about 5× 10−3.



120 LE MAÎTRE ET AL.

2.3. Expansions and Analysis

The above normalization suggests the following multiple-scale asymptotic expansion for
surface elevation and velocity,

ζ(x, ξ, t) = ζ (0)(x, ξ, t)+ εζ (1)(x, ξ, t)+ ε2ζ (2)(x, ξ, t)+ · · · (3)

u(x, ξ, t) = u(0)(x, ξ, t)+ εu(1)(x, ξ, t)+ ε2u(2)(x, ξ, t)+ · · · , (4)

where we have introduced the stretched spatial variable

ξ ≡ εx. (5)

We shall treatx andξ as independent variables. As will be evident later, the variableξ is
most helpful in the description of long waves. Note that the resting depthh is independent
of time and ofε; however,h may vary on the long-waveξ -scale and may also exhibit
small-scalex variations.

The normalization and multiple-scale expansions introduced above enable us to imme-
diately adapt well-known results for zero- and low-Mach-number flow [11, 14–17]. In
particular, following an approach similar to that in [11], it may be shown that:

1. The multiple-scale expansion introduced above leads to the following decomposition
of the gradient operator,

∇ = ∇x + ε∇ξ , (6)

and to a hierarchy of perturbation equations. Of particular interest to the present discussion
are the leading, first- and second-momentum equations, respectively,

∇xζ
(0) = 0 (7)

∇xζ
(1) +∇ξ ζ (0) = 0 (8)

∂u(0)

∂t
+ u(0) · ∇xu(0) +∇xζ

(2) = b(0) −∇ξ ζ (1), (9)

and the leading and first mass conservation equations, respectively,

∇x ·
[(

h+ ζ (0))u(0)] = −∂ζ (0)
∂t

(10)

∂ζ (1)

∂t
+∇x ·

[(
h+ ζ (0))u(1) + ζ (1)u(0)]+∇ξ · [(h+ ζ (0))u(0)] = 0. (11)

2. From Eq. (7), it follows immediately that the leading-order surface deformation is
independent ofx. By considering the volume average of Eq. (8), assuming thatζ (1) has at
most sublinear growth [11], and combining with the result just stated, we conclude thatζ (0)

is independent ofξ as well and is consequently a function of time only. It also follows that the
first-order surface displacement doesnotadmit small-scale variations, i.e.,ζ (1) = ζ (1)(ξ, t).

3. As shown in Eq. (10), temporal variations of the leading-order surface elevation impose
a divergence constraint on the flow field. The significance of this constraint becomes more



MULTISCALE PRESSURE SPLITTING OF SHALLOW-WATER EQUATIONS 121

obvious after we integrate this relationship over the area of the basin and apply the divergence
theorem to obtain

∂ζ (0)

∂t
= − 1

A

∫
L

(
h+ ζ (0))u(0) · n dσ, (12)

whereA is the area of the basin,L its perimeter,n the local outer normal, anddσ a length
element. Thus,ζ (0) changes due to net mass into the basin.

4. When the area of the basinA is large, as is obviously the case in most ocean applica-
tions, the system supports nontrivial wave motion, and we may assume thatζ (0) vanishes
identically. In this case, net mass into the basin is instead reflected through mean changes
of ζ (1). Thus, global changes in the depth, if relevant, are “felt” by the cumulative effect of
gravity waves; see related discussion in [11] and additional remarks in item (5) below.

5. To analyze the dynamics of the system further, we introduce a spatial averaging
operator which filters out small-scale fluctuations. We shall use the overbar to denote this
filtering operator whose action shall be specified later. Taking the average of Eq. (11), and
noting thatζ (1) = ζ (1), we get

∂ζ (1)

∂t
+∇ξ ·

[(
h+ ζ (0))u(0)] = 0. (13)

The spatial average of the divergence term can be estimated from (9), which we rewrite in
the conservation form

∂
(
h+ ζ (0))u(0)

∂t
+∇x ·

[(
h+ ζ (0))u(0)u(0)]+ (h+ ζ (0))∇xζ

(2)

= (h+ ζ (0))b(0) − (h+ ζ (0))∇ξ ζ (1) (14)

after using Eq. (10); the termu(0)u(0) denotes a dyadic product. The second term on the
left-hand side of the above equation drops out upon spatial averaging:

∂
(
h+ ζ (0))u(0)

∂t
+ (h+ ζ (0))∇xζ (2) =

(
h+ ζ (0))b(0) − (h+ ζ (0))∇ξ ζ (1). (15)

Equations (15) and (13) can be combined to yield

∂2ζ (1)

∂t2
−∇ξ ·

[
h̄∇ξ ζ (1)

] = ∇ξ · (h∇xζ (2)
)−∇ξ · hb(0), (16)

after settingζ (0) = 0 (per point 4). Thus, the large-scale O(ε) component of the surface
displacement obeys the linear inhomogeneous wave equation, with variable wave speed
c(ξ) =

√
h̄(ξ). Note that the correlationh∇xζ (2) vanishes wheneverh varies on theξ -scale

only.
6. The discussion above indicates that long-wave “data” are responsible for fast waves

with propagation speeds that are O(1) on theξ -scale. To further appreciate this result, we
revert to standard notation by replacing∇ξ with ε−1∇ (see Eq. (6)), and thus convert Eq. (16)
into

∂2ζ (1)

∂t2
−∇ ·

[
h̄

ε2
∇ζ (1)

]
= 1

ε
∇ · (h∇ζ (2))− 1

ε
∇ · hb(0). (17)
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Thus, in the usual coordinate frame(x), wave propagation speeds are O(ε−1). Note that by
virtue of our normalization conventions the particle motion has characteristic speeds that
are O(1) on thex scale. As noted earlier, the disparity between the characteristic speed of
advective motion and the characteristic wave propagation speeds underscores one of the
well-known difficulties in modeling low-Froude-number flows.

3. SPLITTING OF THE SHALLOW-WATER EQUATIONS

3.1. Preliminaries

The multiple-scale analysis conducted above suggests that a good starting point for
addressing the difficulties of the low-Froude-number problem is to (a) isolate fast-moving
gravity waves from the remaining phenomena, and (b) absorb the difficulties associated
with the fast waves by first performing a long-wave integration based on suitably averaged
data and then accounting for small-scale dynamics. An attractive approach which reflects
these ideas is to perform a splitting of the equations of motion into slow and fast dynamics.

We begin our presentation by rewriting the equations in time-integrated form,

u(tn+1) = u(tn) +
∫ tn+1

tn

[b− u · ∇u− ε−2∇ζ ] dt (18)

ζ(tn+1) = ζ(tn) −
∫ tn+1

tn

∇ · [(h+ ζ )u] dt, (19)

where we assume that the initial conditions at timetn are known. The above time integral
can be split into two systems, one corresponding to the slow dynamics,

ui = u(tn)+
∫ tn+1

tn

[b− u · ∇u] dt (20)

ζi = ζ(tn)−
∫ tn+1

tn

∇ · (ζu) dt, (21)

and another corresponding to the fast dynamics,

u(tn+1) = ui −
∫ tn+1

tn

ε−2∇ζ dt (22)

ζ(tn+1) = ζi −
∫ tn+1

tn

∇ · (hu) dt, (23)

whereui andζi denote intermediate values. Note that the fast system corresponds to solving
the linear differential equations

∂u
∂t
+ ε−2∇ζ = 0 (24)

∂ζ

∂t
+∇ · (hu) = 0 (25)

with the initial conditions pair (ui , ζi ).
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Guided by the asymptotic analysis, we extract the long-wave data using the large-scale
averaging operator [11, 14]

f̄ (x) ≡
∫
D(x;L)

f (x)W(x) dA, (26)

whereW denotes a “radial” weight function of compact support, andD is the support of
W. The notationD(x; L) is used to indicate that the support ofW is centered atx and has
characteristic sizeL. The choice ofW andL will be discussed further below.

The averaging operator isolates the long- and short-gravity-wave dynamics into separate
systems:

∂ū
∂t
+ ε−2∇ ζ̄ = 0 (27)

∂ζ̄

∂t
+∇ · hu = 0. (28)

Note that the above (“linearized”) system accounts for fast-wave propagation. By integrating
it in an implicit fashion, or by using an explicit solver on acoarsecomputational grid, it is
possible to avoid the stiff CFL conditions which limit the application of conventional solvers.
As will be discussed later, the coarse-grid approach is preferred as it also avoids aliasing
or excessive damping of the long waves. The asymptotic analysis leads us to associate
the averaged pressurēζ with εζ (1); the short-wave perturbations can then be defined as
ε2ζ (2) = ζ − εζ (1).

The equations governing the short-wave propagation can be obtained simply by subtract-
ing system (27)–(28) from system (24)–(25),

∂(u− ū)
∂t

+ ε−2∇(ζ − ζ̄ ) = 0 (29)

∂
(
ζ − ζ̄)
∂t

+∇ · [(hu− hu)] = 0, (30)

or equivalently,

∂u
∂t
+∇ζ (2) = ∂ū

∂t
(31)

ε2∂ζ
(2)

∂t
+∇ · (hu) = −ε ∂ζ

(1)

∂t
. (32)

For the numerical scheme to survive the zero Froude number limit,ε → 0, the pressure
term in the momentum equation should be treated implicitly, or at least in a semi-implicit
fashion. Choosing the former approach, we rewrite the above system in the semi-discrete
form,

Mun+1+∇ζ (2) = P (33)

ε2 δζ
(2)

δt
+∇ · (hun+1) = εQ, (34)

whereM is a time-discretization matrix, andP and Q denote the right-hand-side terms
in Eqs. (31) and (32) after time discretization, respectively. Combining Eqs. (33) and (34)
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results in the following “pressure” equation:

ε2 δζ
(2)

δt
−∇ · [hM−1∇ζ (2)] = −∇ · [hM−1P] + εQ. (35)

Note that in the limitε → 0, the above equation reduces to an elliptic equation for the
second-order pressureζ (2), which coincides with the familiar “projection” step encountered
in the rigid-lid formulation.

Also note that, without the multiple pressure approach which explicitly separates O(ε)
(long gravity wave) and O(ε2) (advection) contributions, the analogue of Eq. (35) would
read

ε2 δζ

δt
−∇ · [hM−1∇ζ ] = −ε2∇ · [hM−1P]. (36)

In the limit ε → 0, Eq. (36) reduces to a homogeneous elliptic equation inζ , with no
dependence on the velocity field. Obviously, this isnot the correct low-Froude-number
limit. It follows from the above discussion that the definition of multiple pressure fields,
appropriately scaled by different powers ofε, is a key ingredient for the present shallow
water scheme to survive in the low-Froude-number limit.

3.2. Numerical Implementation

Following the discussion above, we explore a splitting method for integration of the
shallow-water equations. The splitting is based on using a filtering operator to decompose the
numerical solution into small- and large-scale components, which are advanced separately
on a fine and a coarse grid, respectively. Accordingly, the numerical scheme incorporates
the fractional steps summarized below. To emphasize the general nature of the approach,
we revert to the originaldimensional form of the equations, but to simplify the notation
we will drop the tildes from dimensional symbols.

S1. Advection and External Forcing

In the first step, we account for advection processes and external forcing on the system
by integrating the system

System I:

{
∂U
∂t = −U · ∇U + b

∂ζ

∂t = −∇ · (ζU)
(37)

with the initial conditions pair (Un, ζn); here subscriptn refers to the time level at the
beginning of the integration step. An explicit scheme during this step does not cause com-
putational difficulties, since the characteristic advection velocity is O(1). LetUi and ζi

denote the resulting velocity and elevation at the end of S1.

S2. Decomposition of the Intermediate Solution

Guided by the asymptotic analysis, we rely on spatial filtering to decomposeζi andUi

into large-scale and small-scale components. We use

ζ l
i = ζ̄i , ζ s

i = ζi − ζ̄i (38)

Ul
i = Ūi , Us

i = Ui − Ūi , (39)
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where the superscriptsl ands refer to the large- and small-scale components, respectively,
while the overbar refers to the averaging operator introduced in the previous section.

S3. Long-Wave Integration

The long-wave componentsζ l
i andUl

i are used as initial values for the second intermediate
step, which performs a long-wave update. The latter is obtained by integrating

System II:


∂Ul

∂t + g∇ζ l = 0

∂ζ l

∂t = −∇ · [hUl ].
(40)

Note that since (40) accounts for fast-wave propagation, it has to be integrated in an implicit
fashion or by using an explicit solver on a coarse computational grid. While both approaches
enable us to overcome the stiff CFL restriction associated with fast waves, the latter approach
is preferred because it naturally avoids aliasing and/or excessive damping. Nonetheless, both
methods will be tested and compared. We letUl

p andζ l
p denote the fields resulting from the

above fractional step. When a coarse grid is used in the integration of (40), the large-scale
field must be “interpolated” onto the fine grid for the solution to proceed. In this case,
Ul

p andζ l
p refer to the fields after the interpolation is performed. Details on interpolation

procedures will be discussed later.
We have implicitly assumed that the depthh varies on the large scale only, so that

(hU)l = hUl . If h has small-scale variations, an additional term must be inserted to account
for the generation of long waves from the interaction of small-scale waves with the small-
scale topography, i.e., the termh∇xζ (2) in Eq. (16).

S4. Small-Scale Integration

The integration cycle is completed by integrating the small-scale pressure variations

System III:

{
∂Us

∂t + g∇ζ s = 0

∂ζ s

∂t +∇ · (hUs) = 0
(41)

with Us
i andζ s

i as initial data, and settingUn+1 = Ul
p + Us

p andζn+1 = ζ l
p + ζ s

p. Note that
in the limit ε → 0, System II is no longer needed while System III reduces to the familiar
rigid-lid formulation. Since in this limit the speed of pressure waves diverges asε−1, the
above system is integrated in an implicit fashion. Also note that while System III has a form
very close to that of System II, the latter treats long-wave data with pressure amplitudes
scaling as O(ε), while the former describes small-scale dynamics with pressure amplitudes
scaling as O(ε2).

Summary

We summarize the splitting algorithm steps as follows:

1. Integrate (37) explicitly using (Un, ζn) as initial conditions. Label the resulting fields
(Ui , ζi ).

2. Extract the long and short waves:(Ul
i , ζ

l
i ) = (Ūi , ζ̄i ), and (Us

i , ζ
s
i ) = (Ui − Ul

i ,

ζi − ζ l
i ).
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3. Integrate system (40) using (Ul
i , ζ

l
i ) as initial data and call the resulting fields (Ul

p, ζ
l
p).

4. Integrate system (41) using (Us
i , ζ

s
i ) as initial data and call the resulting fields (Us

p, ζ
s
p).

5. Set (Un+1, ζn+1) = (Ul
p + Us

p, ζ
l
p + ζ s

p), and go to step 1.

3.3. Remarks

1. It should be emphasized that in the approach described above, one is actually solving
the full equations of motion andnot a system of asymptotic conservation laws. The var-
ious splitting, filtering, and interpolation procedures are simply designed to help achieve
a numerical shallow-water model which (a) would allow synchronous integration of the
2D and 3D equations, (b) would allow large time steps by overcoming the surface CFL
condition, (c) does not damp or alias long waves, (d) accommodates large variation in the
rest depth, and (e) would extend naturally from zero to moderate Froude numbers. In par-
ticular, the propagation of long-wave data on a coarsened grid (step S3) may be viewed as a
“preconditioning” step and should not be identified with an approximate evolution equation.

2. As mentioned in the Introduction, an approach analogous to that described above has
been used in the context of low-Mach-number finite-difference computations [11, 14, 18].
Based on these experiences, one would anticipate that the success of the present multiple-
scale ocean modeling approach would crucially depend on the performance and cost of the
averaging and interpolation operators, which are used to isolate different components of the
solution and in transferring data between grids of different resolution. Below, we focus on
these issues for finite-difference and spectral-element discretizations.

3. Another key aspect in the present approach is the implicit or semi-implicit pressure
solution in the correction step, S4. Obviously, this small-scale pressure update must not
require excessive overhead, so that the advantages of the time splitting can be maintained.
The selection and implementation of adequate solvers will be addressed in a following
article [13], in the context of multidimensional computations.

4. FINITE-DIFFERENCE COMPUTATIONS

In this section, we examine the performance of the splitting scheme of the previous
section in a simplified one-dimensional setting. As discussed in Section 4.1, a test problem
which consists purely of advection and gravity waves is considered. The problem is set
in a 1D periodic domain of constant depth. This simplified setting is also used to analyze
the role of the filtering operator that is used to extract the long-wave data. In particular,
results obtained with various filter functions are contrasted to each other and to results
of spectral-Fourier filtering and interpolation. Furthermore, we exploit the present setting
to explore two approaches to long-wave integration. In the first approach, long waves are
advanced using an implicit scheme on the fine grid; in the second, long waves are treated
explicitly on a coarse grid. These approaches are referred to as single-grid method (SGM)
and double-grid method (DGM) and are discussed in Sections 4.2 and 4.3, respectively.

4.1. Model Problem

In order to isolate gravity waves and advection, we focus on a shallow-water system with
no external forcing. This is simply achieved by settingb≡ 0 in the governing equations. Us-
ing the reduced system, we consider a one-dimensional basin of lengthL = L ref = 3600 km,
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and uniform rest depth,h = Href = 1 km. Periodic boundary conditions on the velocity and
elevation are imposed, using

U (x = 0, t) = U (x = L ref, t), ζ(x = 0, t) = ζ(x = L ref, t), ∀t. (42)

Unless otherwise noted, the initial conditions are given by

U (x, t = 0) = 0 (43)

and

ζ(x, t = 0) = ζ0(x) = a exp

[
−
(

x
L ref
− 1

2

)2

0.005

]
; (44)

i.e., the velocity initially vanishes while the surface elevation corresponds to a Gaussian
bump centered at the middle of the basin, and with amplitudea = 0.5 m.

The linear solution to the above problem consists of left- and right-going waves traveling
at the speedc = √gh∼ 100 m/s. The linear solution is given by

ζ(x, t) = 1

2
[ζ0(x − ct)+ ζ0(x + ct)] (45)

u(x, t) = g

2c
[ζ0(x − ct)− ζ0(x + ct)]. (46)

Thus, the Froude number can be estimated asga/c2 = a/h ∼ 5× 10−4.

4.2. Single-Grid Method

4.2.1. Discretization

In the SGM, the spatial discretization of the governing equations is performed on a sin-
gle, staggered, finite-difference grid with mesh size1x. The grid points are uniformly
distributed over the interval [0, L ref]. The grid size1x = L ref/Nf , whereNf is the total
number of grid points. The velocity field is discretized at the node points while the elevation
is discretized at cell centers. We adopt the standard notationxi ≡ (i − 1)1x, xi+1/2 ≡ (xi +
xi+1)/2,Ui ≡ U (xi ), ζi ≡ ζ(xi+1/2), andi = 1, . . . , Nf . Derivative operators are approx-
imated using centered differences, according to

∂U

∂x
(xi ) = Ui+1−Ui−1

21x
∂ζ

∂x
(xi ) = ζi − ζi−1

1x
(47)

∂(Uζ )

∂x

(
xi+1/2

) = ζi+1− ζi

2 Ui+1− ζi + ζi−1

2 Ui

1x
.

As outlined in the previous sections, different integration schemes are used in the frac-
tional step approach. In the present SGM implementation, we rely on the third-order Adams–
Bashforth (AB3) scheme to integrate System I and on the Crank–Nicolson (CN) scheme to
update Systems II and III.
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FIG. 1. Comparison of computed solutions after 1 day using the SGM and fully explicit schemes. The SGM
computations are performed with1t = 1 min, while the explicit scheme uses1t = 5 s,1x = 10 km in both
cases.

4.2.2. Results

The evolution of the system is computed for a period of 1 day, using a grid withNf =
360 grid points and a mesh size1x = 10 km. In all cases discussed in the present section,
the averaging procedure relies on a top-hat filter,

Wb(x) =
{

1
2La
|x| ≤ La

0 |x| > La

, (48)

whereLa is the averaging length. For the tests below, we useLa = 1000 km.
Figure 1 shows the elevation after 1 day, computed using a time step1t = 1 min. The

corresponding advective CFL number is CFLa = 10−3, while the CFL based on the gravity
wave speed is CFLw = 0.6. The SGM solution is contrasted with results based on a fully
explicit integration of theoriginal system of equations, using an AB3 scheme with1t = 5 s.
The agreement between the two solutions is quite evident.

Next, we examine the effect of the time step on the SGM predictions. To this end, solutions
are obtained with1t = 2, 5, and 10 min, and curves for the free-surface elevation at the end
of 1 day are plotted in Fig. 2. The results show that for1t ≥ 5 min the SGM predictions
are significantly influenced by the value of the time step. Rapid amplification of phase errors
is observed as the time step increases.

FIG. 2. Effect of1t on SGM predictions. Plotted are free-surface elevations computed with1x = 10 km,
and1t = 1, 2, 5, and 10 min.
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FIG. 3. Free-surface elevation at selected times. The SGM solution is obtained with1x= 10 km and
1t = 5 min.

To further verify this claim, we plot in Fig. 3 the free-surface elevation at 1-week intervals,
the solution being computed with1t = 5 min. The plot shows oscillations moving at dif-
ferent speeds, an indication of dispersive phase errors. Additional evidence regarding these
phase errors can be found in Fig. 4, which shows the evolution of initially monochromatic
free-surface waves. Figure 4 clearly shows that spurious frequencies are not generated. In
addition, individual modes maintain their amplitudes, indicating that wave damping does
not occur.

The present tests show that the split scheme introduced in the previous section is in fact
well suited to shallow-water computations at low Froude number. However, the implicit
treatment of long waves, though (neutrally) stable, may lead to large phase errors. These
errors become excessively large as soon as the wave-CFL number, CFLw, exceeds unity.

FIG. 4. Free-surface elevation plotted at one-quarter-week intervals, for two different monochromatic waves.
The SGM solution are obtained with1x = 10 km and1t = 5 min.
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Consequently, the present approach does not appear to constitute a suitable means for
constructing a large time-step scheme. This motivates us to consider the fine-/coarse-grid
approach below as a possible alternative.

4.3. Double-Grid Method

As mentioned earlier, the DGM aims at defeating the wave-CFL restriction by using, in
S3, a coarse grid in order to propagate the long-wave data. The remaining pieces of the
algorithm in S1 and S4 are performed using the same spatial discretization as in the SGM
and on a similar grid, which is now referred to as the fine grid. Thus, we shall only describe
the data transfer procedure in S2 and the long-wave propagation in S3.

4.3.1. Definition of Coarse Grid

In the finite-difference computations, the coarse grid is defined so that averaging and
interpolation procedures can be easily implemented. This is achieved using a construction
which ensures that all the nodes of the coarse grid coincide with fine-grid nodes at the
corresponding spatial locations. To this end, the coarse-grid size,1X, is defined using

1X = nr1x, (49)

where1x is the fine mesh size. The termnr is assumed to be an odd positive integer and
is referred to as grid ratio. Thus, the number of grid points in the coarse grid,Nc, is given
by Nc = Nf /nr . The coarse-grid locations are related to the fine-grid positions using{

Xi = xj , j = (i − 1)nr + 1

Xi+1/2 = xk, k = (i − 1/2)nr + 1,
(50)

i = 1, . . . , Nc. As discussed below, this definition simplifies the data transfer operations
outlined below.

The choice of grid ratio is primarily dictated by the length scales of the slow and fast
waves. If the latter are much longer than the former, the grid ratio should scale as the inverse
of the Froude number; otherwise, the length scale of the fast waves imposes an upper limit.
Thus we can write1X = min(l/M,1x/ε), wherel is the characteristic length of the fast
waves, and M is the minimum number of grid cells needed to resolve it. In the example
problem, it is the length scale of the fast wave that dictate the coarse-grid spacing, i.e., the
width of the Gaussian bump which is 200 km.

4.3.2. Filtering and Interpolation

Data transfer between the fine and coarse grids is based on (a) interpolating the coarse
grid data onto the fine grid, and (b) filtering fine-grid data to define smooth fields that are
well represented on the coarse grid. Obviously, these steps should be carefully performed
to avoid generating potentially harmful computational modes.

For the purpose of interpolating coarse-grid data the finite-difference computations rely
exclusively on a Fourier interpolation procedure. The latter is based on representing the
coarse data using Fourier modes and directly evaluating the Fourier representation on the
fine-grid values. This ensures that (a) the interpolated field agrees with the original field at
the coarse-grid locations, and (b) high-wavenumber modes are not spuriously generated.
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While Fourier interpolation may not be immediately extended to more general situations, it
enables us to focus on other aspects of the numerical construction. Alternatives are discussed
in the following section, in the context of a spectral-element discretization.

Two procedures for extracting coarse-grid data from the corresponding fine fields are
considered. The first is based on applying a filter function, as indicated in Eq. (26). In
addition to the box filter defined in Eq. (48), we consider the second-order Gaussian filter

Wg(x) = 1√
πσ

exp

(
− x2

σ 2

)
(51)

and an additional filter,Wd, that is designed to provide a more direct control on the spectrum
of the large-scale component.Wd is defined as the inverse Fourier transform of the transfer
function,

H(k) ≡
{

1 k ≤ kc

exp
[−( |k−kc|

nc

)n]
k > kc,

(52)

wherekc is the cutoff wavenumber,n is the order of the Gaussian tail, andnc is its width.
H andWd are plotted in Fig. 5 forn = 2 and different values ofkc andnc.

In order to analyze the effects of filter size and shape, a second filtering approach that is
based on a sharp spectral cutoff is used. This is simply implemented by taking the Fourier
transform of the fine-grid data, truncating the spectrum at a cutoff wavenumberkc, and then
inverting the truncated spectrum onto the coarse-grid positions.

4.3.3. Long-Wave Propagation

We start the analysis of the DGM by comparing solutions obtained with an explicit and
an implicit scheme in step S3. The third-order Runge–Kutta scheme (RK3) and the Crank–
Nicolson scheme are used. The scheme is applied to the model problem summarized in
Section 4.1. Computations are first performed using the filter functionWd with a cutoff
wavenumberkc = 15. The grids are set up so that the fine-mesh size1x = 10 km and
the coarse-grid size1X = 30 km, i.e., the grid rationr = 3. As shown in Fig. 6a for the
present choice ofkc, the filtered and original signals coincide and the short-scale component
vanishes. Also, for the present discretization, the large-scale component is well represented
on the coarse grid, with approximately 8 grid points within the cutoff wavelength.

The evolution of the free surface during day 10 is plotted in Fig. 7, which shows solutions
obtained with RK3 and CN, both using1t = 2 min. The two solutions are directly com-
pared in Fig. 8, which depicts the free-surface elevation at the end of day 10. The results
show that the initial “bump” in the free-surface elevation gives rise to a right-moving wave
and a left-moving wave, with short-wavelength ripples preceding and trailing their crests.
These ripples are caused by phase error that leads to dispersion. Since the gravity wave
speed is approximatively 100m/s, at the end of day 10, the right- and left-moving waves
have completed 26 round trips along the basin. Moreover, further analysis shows that the
RK3 scheme introduces less dispersion than the CN scheme. This difference can be seen
in Fig. 8, where the solution obtained using the RK3 scheme has preserved the wave shape
better than the CN scheme. The results also show that wave attenuation is very weak through-
out the computation; energy transfer to short waves is also insignificant. Note that for the
same time step and fine-mesh size, the SGM solution rapidly breaks down because of buildup
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FIG. 5. Curves forH (top) andWd (bottom) forn = 2, and different values ofkc andnc.

of phase errors. Thus, the double-grid scheme provides an approach more suitable for the
construction of the large-time-step method.

The Crank–Nicolson and RK3 solutions are further compared in Figs. 9 and 10, which
show simulations using the same model problem and spatial resolutions but with a larger time

FIG. 6. Application of the filterWd to the initial elevation field in Eq. (42). Full, filtered, and short-scale
spectra withkc = 15 (left) andkc = 10 (right).
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FIG. 7. Evolution of the free surface during day 10. Long waves are advanced using RK3 (top) and CN
(bottom). In both cases,1t = 2 min,1x = 10 km,1X = 30 km. The wave-CFL number on the coarse-grid
CFLw = 0.396.

step1t = 5 min. The corresponding wave-CFL number on the coarse grid is CFLw = 0.996.
Figures 9 and 10 show that for1t = 5 min, the CN and RK3 solutions exhibit noticeable
differences. Compared with solutions obtained with1t = 2 min, the RK3 solution shows
that the shape of the waves is well preserved, with weak wave attenuation of the wave

FIG. 8. Comparison of RK3 and CN solutions at the end of day 10. Same parameters as in Fig. 7.
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FIG. 9. Evolution of the free surface during day 10. Long waves are advanced using RK3 (top) and CN
(bottom). In both cases,1t = 5 min,1x = 10 km,1X = 30 km. The wave-CFL number on the coarse-grid
CFLw = 0.996.

amplitudes, which is particularly noticeable for the short-wavelength ripples. On the other
hand, in the CN computation with1t = 5 min phase errors build up substantially and the
solution deteriorates rapidly. The present experiences indicate that, in the present fractional-
step framework, the use of accurate explicit schemes to propagate long-wave data on coarse

FIG. 10. Comparison of RK3 and CN solutions at the end of day 10. Same parameters as in Fig. 9.
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grids is an attractive means to relax the integration time step while maintaining the quality
of the solution.

4.3.4. Effect of Grid Ratio

The previous computations suggest that the coarse-grid resolution should be selected
so that the corresponding wave-CFL number is not excessively large. This, in turn, sug-
gests the use of a large grid ratio. However, as pointed out earlier, the grid ratio should
be carefully selected, so that the filtered quantities are well represented. For the present
centered-difference approximations, a reasonable estimate is to require roughly 10 points
with the shortest cutoff wavelength, i.e., 101Xmax∼ L refkc. Forkc = 10,1Xmax∼ 36 km.

To examine the effect of1X on the solution, computations are repeated using the RK3
scheme,1t = 2 min, andkc = 10. Three grid ratios are considered,nr = 3, 5, and 9. The
corresponding coarse-grid sizes are1X = 30, 50, and 90 km, and the wave-CFL numbers
are CFLw = 0.396, 0.237, and 0.132. Fornr = 3, the solution is nearly identical to that
obtained withkc = 15, and shown in Figs. 7 and 8. Fornr = 5 andnr = 9, the evolution of
the free surface during day 10 is shown in Fig. 11; and the elevation at the end of day 10 is
plotted in Fig. 12. The results indicate that as1X increases, the filtered fields may become
poorly represented on the coarse grid, which results in severe deterioration in the accuracy
of the solution.

FIG. 11. Evolution of the free surface during day 10. Long waves are advanced using RK3 with1X = 50 km
(top) and1X = 90 km (bottom). The corresponding grid ratios arenr = 5 andnr = 9, and the wave-CFL numbers
CFLw = 0.237 and 0.132, respectively. In both cases,1t = 2 min, and1x = 10 km.
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FIG. 12. Comparison of RK3 solutions after 10 days, using1X = 50 km and1X = 90 km. In both cases,
1t = 2 min, and1x = 10 km.

The present computations indicate that the coarse-grid size should be selected to ensure
adequate representation of filtered quantities. Generally, the coarse-grid size should be
smaller than the filter size, and the required number of grid points for accurate discretization
depends on the filter shape and on the type of spatial discretization. For the present centered-
difference approximations and selected filter type, we find that about 8 grid points are
sufficient to adequately capture all the dynamics up to the filter scale. This requirement may
be relaxed if higher-order discretizations are used, and this provides additional motivation
for the spectral-element discretization of the following section.

4.3.5. Further Analysis of Behavior

We conclude this section with a short remark on the behavior of the split scheme, par-
ticularly concerning the quality of the long-wave prediction. We briefly address this issue
by comparing in Fig. 13 the free-surface elevation computed using the split scheme on a

FIG. 13. Solutions at end of 2 days for the fully explicit schemes on coarse (N = 120) or fine (N = 360)
grids and for the split scheme with the same coarse or fine grids. The explicit solutions are obtained with AB3 and
1t = 10 s. The split scheme uses RK3 for large-wave propagation and a design filter withkc = 15. Only the left
half of the domain is shown.
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grid with Nc = 120 andNf = 360 to predictions obtained using fully explicit schemes on
grids with N = 120 andN = 360. The comparison shows that the prediction of the split
scheme is very close to that obtained using the explicit scheme withN = 120. (Generally,
we find a general agreement between the split and unsplit computations when the resolution
of the coarse mesh in the split computations is the same as that of the unsplit scheme.) On
the other hand, notable differences can be observed between the results of the split scheme
at unsplit computations at finer resolution level,N = 360. These differences are due to
the amplification of phase errors in the propagation of the surface gravity waves and not
the result of splitting errors. To verify this claim, we first examine the effect of the time
step by contrasting in Fig. 14 elevation profiles obtained with different values of1t ; the
differences between the split and unsplit solutions are shown in Fig. 15. The results show
that the predictions of both split and unsplit calculations are essentially independent of the
value of the time step, indicating that differences observed in Fig. 13 are dominated by
spatial (phase) errors. Combined with the above experiences, the present results indicate
that the split scheme enables efficient prediction of long free-surface waves with an error
level comparable to that of the unsplit computation at the coarse resolution level. Moreover,
because of the implicit treatment at large CFL, the propagation of short waves on the fine
grid may not be captured accurately. In practical situations, however, this does not lead to

FIG. 14. Effect of the time step on the computed free-surface elevation for the fully explicit (top) and split
(bottom) schemes. The explicit calculations are performed on a grid withN = 120, using AB3 integration with
1t = 5 and 10 s. The split scheme calculations are performed on a grid havingNc = 120 andNf = 360, with
time steps1t = 10 and 120 s.
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FIG. 15. Differences between the solutions given in Fig. 14.

major difficulty since short scales generally tend to be dominated by (nonlinear) advection
phenomena.

Finally, we note that since the extraction of long waves is based on a convolution operation,
the long-wave propagation may depend on the properties of the selected filter. We have
performed a detailed study (not shown) to determine the effect of the filter on the predictions.
We have found that the propagation of long waves and the corresponding phase errors
depend only weakly on the choice of the filter when, first, the filter size is appropriately
selected and, second, the large-scale component of the solution is well resolved on the
coarse grid. In particular, the computations show that predictions obtained with the design
filter are essentially identical to those obtained with a Fourier-spectral cutoff. By introducing
noticeable damping at low wavenumbers, Gaussian-type filters do not fully capture the long-
wave component of the solution and produce very small but noticeable differences from the
spectral-cutoff and design filters. For these reasons, the design filter has been preferred.

5. SPECTRAL-ELEMENT COMPUTATIONS

Section 4 illustrated a finite-difference implementation of the splitting procedure pro-
posed here. Its basic conclusions are (a) a double-grid method is necessary if an accurate
representation of the large-scale wave is desired, (b) the errors in the split scheme are no
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worse than those resulting from the unsplit integration of the equation on the same coarse
grid, and (c) the filter must eliminate high-wavenumber features unresolvable on the coarse
grid. With these lessons in mind, we proceed to investigate the implementation of the
splitting scheme on a spectral-element discretization of the shallow-water equations.

The spectral-element method is anh-p type finite-element method that relies on high-
order polynomials, usually of degree 4–11, to interpolate the solution within each element. It
thus allows two paths to convergence: algebraic if the polynomial degree is held fixed while
the number of elements is increased (h-refinement); and exponential if the elemental parti-
tion is held fixed and the degree of the interpolating polynomial is increased (p-refinement),
and provided the solution is smooth. We present a very brief description of the spectral-
element discretization in the following section, and we refer the reader to [19–24] for more
details.

We focus below on the issues pertaining to the splitting procedure, namely the definitions
of the fine and coarse grids, the transfer of information between the two grids, and the im-
plementation of the averaging operator. We conclude this section with a series of numerical
experiments to test the spectral-element version of the split scheme.

5.1. Spectral-Element Discretization

We present the spectral-element formulation for Eq. (2); the formulation for the individual
split system can be derived similarly. The variational form of Eq. (2) is∫

A
8ut d A+

∫
A
8

1

ε2
∇ζ d A=

∫
A
(−u∇ · u+ b)8 d A (53)∫

A
9ζt d A−

∫
A
(h+ ζ )u · ∇9 d A= −

∫
∂A
9(h+ ζ )u · n ds, (54)

where8 and9 are the test functions associated with the velocity and pressure, respec-
tively. The divergence term in the continuity equation has been integrated by parts, and the
boundary integral on the right-hand side of Eq. (54) represents the volume of fluid leaving
the domain (n is the outward unit normal to the boundary); this integral is zero if the domain
is closed.

The spectral-element discretization step relies on dividing the domain into elements in
which the solution is interpolated. In 1D, the interpolation is expressed as

u(ξ) =
N∑

i=0

ui h
v
i (ξ) (55)

ζ(ξ) =
N−2∑
i=0

ζi h
p
i (ξ), (56)

wherehvi andhp
i are the Legendre Cardinal functions [25] for the velocity and pressure grids,

respectively. These are defined on the Gauss–Lobatto roots of the Legendre polynomials of
degreeN andN − 2. We have used a polynomial of lower order for the pressure in order
to stagger the pressure and velocity collocation points, and thus suppress spurious pressure
modes [12]. Setting8 = hvi and9 = hp

i , and substituting the interpolation formulas in the
variational form, we obtain a system of ordinary differential equations in time which must
be integrated according to the splitting procedure. We note that the integrals arising from
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the variational form are evaluated with Gauss–Lobatto quadrature which leads to a diagonal
mass matrix for the velocity and pressure. The time discretizations we have implemented
are third-order Adams–Bashforth for System I, third-order Runge–Kutta for System II, and
finally first-order Euler-Backward for System III.

5.2. Coarse Grids

The h-p character of the spectral element method offers severals approaches to coars-
ening the grid:p-coarsening, which consists of holding the elemental partition fixed while
decreasing the degree of the polynomial,N; h-coarsening, where several elements are col-
lapsed into one coarse element (element corners on the coarse grid are corners of elements
on the fine grid);h-p coarsening, where the coarse elements are allowed to have a different
spectral truncation than the fine grid; and, finally, a coarse grid where the elements’ corners
do not necessarily coincide with those of fine elements. (We do not pursue this last approach
here as it does not extend easily to two dimensions.)

Experimentation has shown thatp-coarsening alone is not flexible enough because of the
(relatively) small number of spectral modes used in spectral-element methods and which,
in practical circumstances, ranges from 4 to 11. In addition, the spectral truncation on the
coarse elements cannot be made arbitrarily small without degrading the spectral properties
of the numerical scheme.

We have studied two methods for the calculations of the coarse-grid fields. The first one
is the convolution filter (26) and its associated transfer function defined in (52). The convo-
lution integral is evaluated as a sum of elemental contributions which are calculated with
Gauss–Lobatto quadrature; the procedure thus consists of elemental matrix–vector products.
There are two drawbacks to the convolution approach that make it difficult to generalize to
two dimensions. First, the weight function is only known in Fourier space through its trans-
fer functionH , which must be Fourier-transformed back to physical space. This inversion is
in general difficult to calculate in two-dimensional domains with complicated geometries.
In the present work, the weight function is evaluated on a dense equi-spaced grid via FFT
before it is interpolated to the spectral-element collocation grid. Second, the storage of the
convolution matrices increases as the square of the number of nodes in the grid, and be-
comes quickly impractical in two dimensions. Storage can be saved by taking advantage of
the decaying character of the weight function and by discarding the contributions of nodes
further away than a specified cutoff distance. This saving, however, is complicated to code,
particularly in two-dimensional unstructured domains.

In order to circumvent the aforementioned difficulties, we have implemented a projection
method to calculate the coarse-grid variables. This projection is essentially designed for the
h-p coarsening where the corners of the coarse elements coincide with fine-element corners.
The projection method is a modification of the mortar projection presented in Levinet al.
[26]. Its highlights are that it operates at the coarse-element level, preserves the continuity
of the function across coarse-element boundaries, and minimizes the difference between the
coarse and fine representations. The following section describes the projection approach.

5.3. Projection Approach

Let 0̄ denote a coarse element comprisingK fine elements0k, k = 1, . . . , K ; see Fig. 16.
Let N̄ andN be the order of spectral interpolation on the coarse and fine grids, respectively.
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FIG. 16. Relative position of fine-element0k within coarse-element̄0; s is the offset between the corner
of the coarse element and that of the fine elements. The fine and coarse elements have separate computational
coordinatesξ andξ̄ , respectively.

A function u on the fine grid admits a representation in terms of theN Legendre Cardinal
functions:

u(x(ξ))|0k =
N∑

i=0

uk
i hN

i (ξ). (57)

Its projectionū onto the coarse element can be similarly written as a series of Legendre
Cardinal functions of order̄N:

ū(x(ξ̄ )) =
N̄∑

m=0

ūmhN̄
m(ξ̄ ). (58)

Here,hN
i andhN̄

m denote the fine and coarse Legendre Cardinal functions defined on the
Gauss–Lobatto roots of orderN and N̄, respectively. The projection is defined by the
following: ∫

0̄

(ū− u)ψ dx = 0 ∀ψ ∈ P(0̄)

ū(ξ̄ = −1) = u1(ξ = −1) (59)

ū(ξ̄ = 1) = uK (ξ = 1).

Here, P(0̄) denotes the space of polynomials defined on0̄ of degree less than or equal
to N̄ − 2. Relation (59) fixes the function values at the endpoints of the elements to those
given on the fine grid and requires thatu− ū be orthogonal to the spaceP(0̄); i.e., ū and
u have the same coefficients in the basisψq. Note that because of the two constraints at the
end points, only an additionalN − 2 constraints can be imposed onū.

The choice of basis forP(0̄) is at our disposal, and, for convenience, we choose a set of
modified Legendre Cardinal functions,

ψq(ξ) =
−L ′N̄(ξ)

(
1− ξ N̄

q

)(
1+ ξ N̄

q

)
N̄(N̄ + 1)L N̄

(
ξ N̄

i

)(
ξ − ξ N̄

q

) , q = 1, . . . , N̄ − 1, (60)

whereL N̄ is the Legendre polynomial of degreēN, andξ N̄
q ,q = 1, . . . , N̄ − 1 are the roots

of L ′N̄ . Theψq are polynomials of degreēN − 2, and also are the Lagrangian interpolants
on the interior Gauss–Lobatto roots ofL N̄ , i.e., the coarse-grid collocation points minus
the endpoints.
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The discrete form of the projection operator is obtained by inserting (57) and (58) into
(59):

N̄∑
m=0

(∫ 1

−1
hN̄

mψq|xξ̄ | dξ̄
)

ūm =
K∑

k=1

N∑
i=0

(∫ 1

−1
hN

i ψq

∣∣xk
ξ

∣∣ dξ) uk
i , 1≤ q ≤ N̄ − 1

ū0 = u1
0, (61)

ūN̄ = uK
N .

Thexξ̄ andxk
ξ are the metric factors of the mapping between physical space and the com-

putational spaces of the coarse and fine grids, respectively. The integrals on the left-hand
side can be computed exactly with Gauss–Lobatto quadrature of orderN̄, providedxξ is
(at most) a linear function. Similarly, the integrals on the right-hand side can be computed
exactly with Gauss–Lobatto quadrature of orderN in each element of the fine grid provided
thatN ≥ N̄. Equations (61) arēN + 1 equations in thēN + 1 unknowns̄um. Note that the
choice of quadrature and weight functions produces a diagonal matrix on the right-hand
side, thus reducing the operation count needed for the projection. The latter can thus be
written compactly as a matrix vector product of the form

ūq =
K∑

k=1

N∑
i=0

Qk
qiu

k
i , 0≤ q ≤ N. (62)

The formulas for theQK
qi are listed in the Appendix.

5.4. Numerical Experiments

5.4.1. Periodic Channel

Here, we reconsider the periodic channel problem of Section 4.1, but with a modified
initial condition of the form

u(x, t = 0) = 0, ζ(x, t = 0) = 0.5 exp

[ −1

0.005

(
x

L
− 1

2

)2]
+ 0.05 sin

(
2πx

λ

)
. (63)

The initial wave form is made up of two distinct waves, a large-scale Gaussian hump with
a decay length scale of

√
0.005L = 255 km and amplitude of 0.5 m, and a small-scale sine

wave with one-tenth the amplitude with wavelengthλ = 120 km. The Fourier spectrum
of the surface displacement has very small Fourier coeffcients(< 1.1010) for all Fourier
modesn > 21, exceptn = 31, where there is a single spike. This separation in spectral
space allows us to call the first part the large wave, and the other part the small wave. The
remaining physical parameters of the problem are set toL = 3600 km,D = 1000 m,and
g = 10 m/s2. The wave speed is

√
gh= 100 m/s; hence the wave needs 10 h to return to

its initial position.
The aim of the numerical simulations reported here is to assess the ability of the split

scheme to propagate the large-scale wave properly, to investigate the sensitivity of the
solution to the method used to transfer information between the coarse and fine grids (filter
versus projection method), and finally to experiment with the different coarsening strategies.
To compare quantitatively the different numerical experiments, we define an error measure
that focuses primarily on the large-scale component of the wave. This large-scale component
is extracted by padding the spectrum of the solution with zero for all modes higher than 21.
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TABLE I

Unsplit Split filter Split projection

K̄ N̄ 1t ε∞ ε2 ε∞ ε2 ε∞ ε2

24 15 10 1.60e-3 1.21e-5
24 11 20 1.50e-3 1.16e-5 1.40e-3 1.50e-5 1.60e-3 1.22e-5
24 9 40 1.90e-3 1.36e-5 1.59e-3 1.51e-5 1.70e-3 1.19e-5
24 7 60 4.80e-3 2.86e-5 2.64e-3 2.36e-5 2.40e-3 1.68e-5
24 5 150 4.70e-2 2.88e-4 2.19e-3 1.40e-4 1.57e-2 8.54e-5
24 3 400 4.09e-1 3.30e-3 4.37e-1 2.98e-3 4.47e-1 3.90e-3

Note. p-coarsening, fine grid hasK = 24 andN = 15; the coarse grid has̄K = 24. ε2 refers to the rms error
in the surface elevation, andε∞ to the maximum error.

Tables I, II, and III summarize the results of our numerical experiments for thep, h,
and mixedh-p coarsening, respectively. Three solutions are computed for each set of
coarsening experiment: a reference solution using the original unsplit scheme computed on
the coarse grid of the split scheme, and two split scheme solutions using either the design
filter or the projection method to transfer information between the fine and coarse grids.
(The filter parameters were held fixed atkc = 10 andnc = 1.) In addition, we have dropped
the nonlinear terms from the shallow-water equations for this particular set of experiments,
and all errors reported herein used the analytical solution to the linearized equations as a
reference.

We note that the elemental partition of the fine grid consists of 24 150-km elements,
with each element holding 1.25 small waves. Using Boyd’s rule of thumb [25],N = 5+
4(M − 1), whereM is the number of waves within an element, the small waves are resolved
to better than 1% accuracy on the fine grid forN ≥ 7. None of the coarse grids listed in
the tables can resolve the small-scale wave, except for thep-coarsening case with̄N ≥ 7.
We also note that asN increases, the spectral-element model becomes more spectral in
character, and the minimum grid spacing decreases as 1/N2; thus the most stringent CFL
restriction is encountered forK = 24 andN = 15.

Examination of maximum and rms errors in Tables I–III reveals that the numerical errors
of the split scheme are similar to those of the coarse-grid unsplit scheme; thus the errors
introduced by the splitting are small. The tables also reveal that the split scheme allows
a substantially larger time step without incurring an undue penalty in the accuracy of the

TABLE II

Unsplit Split filter Split projection

K̄ N̄ 1t ε∞ ε2 ε∞ ε2 ε∞ ε2

24 9 40 1.90e-3 1.36e-5
12 9 80 1.06e-2 6.20e-5 3.10e-3 2.00e-5 6.40e-3 4.72e-5
8 9 120 2.91e-2 2.26e-4 5.32e-3 3.20e-5 2.78e-2 3.95e-4
6 9 160 5.37e-2 3.36e-4 1.10e-1 1.65e-3 2.19e-2 1.55e-4
4 9 240 1.07e-1 7.18e-4 9.08e-1† 8.72e-2† 7.34e-2 5.80e-4

Note. h-coarsening, fine grid hasK = 24 andN = 9; the coarse grid has̄N = 9. Simulations marked with a†
were unstable due to a leakage of small-scale wave onto the coarse-grid solution.
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TABLE III

Unsplit Split filter Split projection

K̄ N̄ 1t ε∞ ε2 ε∞ ε2 ε∞ ε2

12 7 120 3.20e-2 2.64e-4 5.36e-3 3.78e-5 1.94e-2 2.59e-4
12 5 300 1.40e-1 9.35e-4 4.76e-1 6.98e-3 8.29e-2 6.65e-4
8 7 200 8.17e-2 7.92e-4 3.25e-2 2.16e-4 3.87e-2 6.65e-4
8 5 450 2.10e-1 1.50e-3 † † 2.10e-1 1.80e-3
6 7 250 1.13e-1 7.42e-4 † † 5.00e-1 4.00e-3
6 5 600 2.59e-1 1.80e-3 † † 3.10e-1 2.60e-3

Note. h-p coarsening, fine grid hasK = 24 andN = 9. Simulations marked with a† were unstable due to a
leakage of small-scale wave onto the coarse-grid solution.

large-scale wave. This is particularly true when there is a large difference in spectral trunca-
tion between the coarse and fine grids (Table I); however, we note that the errors deteriorates
rapidly for N̄ < 7 becase of increased numerical dispersion errors, and become unaccept-
able for N̄ = 3. The increase in allowable time step is smaller for theh-coarsening case
(Table II) and grows in proportion tōK−1.

The filter and projection split schemes behave similarly for thep-coarsening case, with
both schemes producing an accurate estimate of the large-scale component of the wave.
The filter’s performance in theh-coarsening experiment is mixed: it produces smaller errors
than the projection for̄K equal to 24 and 12, and worse errors forK̄ < 8. The explanation
of this behavior resides in the choice of filter parameters in (52) which were held fixed at
kc = 10 andnc = 1. The filter scheme yields accurate results as long the coarse grid can
resolve a Fourier mode of wavenumber less than or equal tokc. Using Boyd’s rule of thumb,
this translates into a requirement on̄N of the form N̄ ≥ 5+ 4(kc/K̄ − 1). Alternatively,
one can choosekc = (N̄ + 1)K̄/4 to guarantee a well-resolved wave on the coarse grid, an
issue that we do not pursue here. The projection method displays a more robust behavior
because it adapts automatically to the coarse-grid resolution.

The present numerical experiments demonstrate that the split scheme improves the stabil-
ity limit imposed by the wave speed, particularly when there is a large difference between
the spectral truncations of the fine and the coarse grid. They also demonstrate that the
coarse-grid spectral truncation must be greater than 4 in order to produce an accurate es-
timate of the large-scale waves. The optimum coarse grid for the present problem is the
h-p coarsened grid with̄K = 8 andN̄ = 7. It provides for an acceptable error level and a
fivefold increase in the time step.

5.4.2. Long-Time Integration

The ability of the split scheme to propagate the large-scale waves for long time is illus-
trated by integrating the previous example for 30 days. The fine grid in this example consists
of 24 elements of order 9, and the coarse grid of 8 elements of order 7. The initial condition
is as before but without the small-scale perturbations. We compare the results of the split
scheme with those obtained from an unsplit explicit integration whose time step respects
the wave-CFL condition on the fine grid. Figure 17 show the results of the split integration
with 1t = 240 s and1t = 120 s, together with the results of the explicit integration with
1t = 40 s. The splitting scheme shows good agreement with the fully explicit scheme with
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FIG. 17. Surface elevation after 30 days of integration with the split scheme with two different time steps:
(– –)1t = 240 s, and (–·–)1t = 120 s, and with explicit scheme using (—)1t = 40 s.

regard to the phase speed of the wave. However, the wave amplitude in the split scheme
displays a slight decay, which decreases with the time step. This decay is mainly due to the
integration of the short waves by the dissipative backward Euler scheme. To verify this, we
perform the standard semi-implicit integration of the unsplit wave system using a backward
Euler for the gravity terms. As shown in Fig. 18, the semi-implicit scheme has effectively
dissipated the solution after just 1 day, while both explicit and split schemes preserve much
of the amplitude of the solution.

5.4.3. Variable Bathymetry

The presence of topography can lead to wave generation, and it is therefore important to
test the split scheme in the presence of topography. Consistent with the assumptions in the
asymptotic analysis, we consider only large-scale topographic variations. Figure 19 shows
the topography chosen for the present experiment. The depth consists of the superposition
of an exponential “hill” with a sine wave of mode 4. Note that the sine wave leads to a
nonsymmetric profile and that the depth variations exceed 50% of the mean depth.

The initial perturbation of the free surface is the large-scale wave of the previous test
problem, but centered on the first third of the computational domain. A 2-min time step
is chosen; the remainder of the numerical parameters are as follows: the coarse grid has
24 elements withN = 14, the coarse grid has 10 elements with̄N = 9, and the cutoff
wavenumber has been set to 12 andnc to 1. These values lead to a CFLw equal to 0.82 based
on a reference depth of 1000 m.
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FIG. 18. Surface elevation after 5 days of integration with the split scheme using1t = 240 s (– –), the unsplit
semi-implicit scheme using1t = 240 s (–·–), and the unsplit explicit scheme using1t = 40 s (—).

The time evolution of the free surface is plotted in Fig. 20. The results show that wave
propagation is substantially affected by depth variation. As in the previous cases, left- and
right-propagating components of the initial perturbation are still clearly tractable, but in the
present case the generation of new modes can be observed. Note also that for the time scale
considered (1 day), the evolution seems to be roughly periodic with characteristic period
close toL ref/

√
gHref ≈ 10 h.

5.4.4. Wall Boundary Conditions

The implementation of the averaging and filtering operators in the examples above de-
pended implicitly on the periodicity conditions. These operators must be modified for
nonperiodic boundary conditions in order to prevent the support of the weight function
from extending outside the computational domain. The modified averaging and filtering

FIG. 19. Normalized depth for computational case of Section 5.4.4.
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FIG. 20. Evolution of the free-surface perturbation during day 9 for periodic and variable test case. Depth
profile is given in Fig. 19.1t = 2 min, andkc = 12.

operators must also be able to handle one-sided averaging footprints near the boundary.
This is easily implemented in one-dimensional problems by truncating the convolution of
the fields withW and renormalizing the truncated weight function. The performance of
the truncated averaging operator is briefly illustrated by considering the same domain and
initial conditions as in the previous example, but with the perdiocity velocity conditions re-
placed with homogeneous Dirichlet boundary conditions. The evolution of the free-surface
perturbation is plotted in Fig. 21. It shows that the truncated averaging operator in the closed
domain does not introduce spurious oscillations. The loss of spatial periodicity is clearly
visible, as neither the initial conditions nor the depth profile is symmetric.

FIG. 21. Evolution of the free-surface perturbation during day 9 for the wall boundary conditions and variable
depth. The depth profile is given in Fig. 19.1t = 2min, andkc = 12.
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The truncation of the weight function and renormalization are much harder to implement
for two-dimensional problems, particularly if the basin geometry is complicated and if the
grid is unstructured. The difficulties stem from the facts that, first, the transfer functionH
in Eq. (52) cannot be inverted easily to obtainWd, and, second, the storage requirement
would increase subtantially. We note, finally, that the projection operator does not depend
on periodicity because it operates locally at the (coarse) element level, and because it does
not modify the boundary values.

6. CONCLUSION

We have exploited our multiple-scale analysis of the shallow-water equations to design
a new multiple-pressure-variable (MPV) solver that is effective in defeating the stifiness
from the high speed of surface gravity waves. Our MPV approach splits the barotropic
pressure, i.e., the surface elevation, into three components that are integrated separately.
The first component, dubbed the slow mode, responds to slow dynamics such as internal
wave motion and advection. The second component is the large-scale pressure responding
to the fast dynamics of the surface gravity wave. The third component is the small-scale
pressure that also corresponds to the fast, “near-equilibrium” dynamics of the surface wave.

We have constructed finite-difference and spectral-element versions of our MPV shallow-
water solver. The two versions yield similar results and confirm that the splitting of the
pressure succeeds in defeating the stability limit imposed by the surface gravity waves
regardless of the underlying spatial discretization.

The integration of the large-scale pressure requires the formation of a coarse mesh where
the CFL limit on the fast gravity waves would be comparable to the convective CFL limit
on the original grid. This coarsening can be achieved in one of three ways in SEOM:
p-coarsening, where the elemental partition would be kept the same and the order of the
interpolation polynomial would be reduced to linear;h-coarsening, where the interpolation
order would be kept constant but a coarse element would be formed from the union of several
fine elements; and finally a combination ofh-p coarsening. Our experiments revealed that
pure p-coarsening is not a viable choice because the accuracy of the scheme deteriorated
and became unacceptable when linear or quadratic interpolation was used. These low-order
interpolations introduced a large dispersive numerical error that distorted the propagation
of the large-scale pressure wave. This error became insignificant as soon as the degree of the
interpolation polynomial exceeded 5. We have thus adopted anh-p coarsening strategy that
bunches fine elements together to form the coarse element and that keeps the interpolation
order comparable to the one in the original fine grid.

The calculation of the large-scale pressure requires the application of a suitable aver-
aging and filtering operator with good spectral properties on the coarse grid, i.e., one that
eliminates all small-scale structures since these adversely affect the integration step. While
Gaussian-type averaging operators proved to be adequate, computed results showed that the
spectral-like design filter is superior, particularly for the finite-difference version. For spec-
tral elements, the spectral averaging is limited since “global spectra” on complex domains
with unstructured grids are difficult to form. We have thus relied on the local spectrum at
the coarse element level in order to segregate the large-scale signal from the small-scale
component. We have devised a projection-type method, borrowed from the mortar-element
method, to transfer information between the coarse and fine grids. This projection has good
interpolation and stability property and has been retained in our code.
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We have adopted the following integration schemes for each component in the solution:
(a) an explicit third-order Adams–Bashforth scheme (AB3) for advection terms, (b) a third-
order Runge–Kutta scheme (RK3) for the large-scale pressure mode, and (c) an implicit
Crank–Nicholson scheme (CN2) or a first-order Euler-Backward scheme (EB) for the small-
scale pressure mode. The RK3 proved to be superior to CN2 for the large-scale pressure mode
because it has substantially less dispersive errors and has acceptable stability properties.
For the small-scale pressure mode, the CN2 proved to be adequate for the finite-difference
version but unstable for the spectral-element version. This was traced back to the dissipation
properties of the CN2 scheme when the time step exceeded the explicit stability limit by
a large factor. In this regime, small-scale waves are underdamped by CN2 and can lead
to a buildup of energy at the tail-end of the spectrum and thus to unstable behavior. The
spectral-element version turned out to be more sensitive to such aliasing than the finite-
difference version, and thus required the adoption of a more stable integration scheme such
as EB.

In summary, our numerical experiments with the one-dimensional version have allowed
us to finalize our choices for the coarsening strategy, averaging and filtering operators to
compute the large-scale signals, and the integration schemes for each pressure mode. The
splitting algorithm has been extended to two dimensions and is currently being tested.

APPENDIX

The evaluation of the integrals involves the mappings between the computational spaces
of the fine and coarse elements and physical space. The two mappings are linked byx(ξ̄ ) =
x(ξ ) for x ∈ 0k, whereξ̄ is the computational coordinate in the coarse element, andξ is
the computational coordinate in the fine element. In one-dimensional problems where the
elements are stretched linearly only, we have the relation

ξ̄ (ξ ) = 2

|0̄|s− 1+ |0k|
|0̄| (ξ + 1), (64)

where|0̄| is the length of the coarse element,|0̄k| is the length of the fine element, ands is
an offset between the two (see Fig. 16).

The entries of the projection matrix are given by

Qk
0i = δi 0δk1 (65)

Qk
qi =

ψq(ξ̄ (ξi ))ω
N
i |xk

ξ |i − δi 0δk1u1
0B0ψq(−1)− δi N δkKuK

N BN̄ψq(1)

Bq
, 1<q< N̄ (66)

Qk
N̄i = δi 0δk1 (67)

Bq = ωN̄
q |xξ̄ |q, (68)

whereωN̄
i andωN

i are, respectively, thēNth and Nth order Gauss-Lobatto quadrature
weights,|xζ̄ |q is the metric of the transformation between physical space and the coarse-
element computational space evaluated atξ̄q, |xk

ξ |i is the corresponding fine-element metrics
evaluated atξ k

i , andδmn is the Kronecker delta.
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